提高碳钢摩擦搅拌焊抗拉强度的工艺参数优化

A. Bhatia, Reeta Wattal
{"title":"提高碳钢摩擦搅拌焊抗拉强度的工艺参数优化","authors":"A. Bhatia, Reeta Wattal","doi":"10.5545/sv-jme.2021.7203","DOIUrl":null,"url":null,"abstract":"The present study focuses on improving the ultimate tensile strength of friction stir welded carbon steel (AISI 1018). The effect of the process parameters (welding speed, tool RPM, and shoulder diameter) on the response parameters (ultimate tensile strength, percentage elongation and percentage reduction in area) were studied. Response surface methodology was used to develop the mathematical model for response parameters, and the adequacy of the model was checked using analysis of variance (ANOVA). The welding speed and tool RPM were found to affect the ultimate tensile strength significantly. The percentage elongation was affected only by welding speed. The percentage reduction in the area was affected by welding speed and shoulder diameter. The microstructure and microhardness of the weld have been studied and reported in the study.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Process Parameters Optimization for Maximizing Tensile Strength in Friction Stir-Welded Carbon Steel\",\"authors\":\"A. Bhatia, Reeta Wattal\",\"doi\":\"10.5545/sv-jme.2021.7203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study focuses on improving the ultimate tensile strength of friction stir welded carbon steel (AISI 1018). The effect of the process parameters (welding speed, tool RPM, and shoulder diameter) on the response parameters (ultimate tensile strength, percentage elongation and percentage reduction in area) were studied. Response surface methodology was used to develop the mathematical model for response parameters, and the adequacy of the model was checked using analysis of variance (ANOVA). The welding speed and tool RPM were found to affect the ultimate tensile strength significantly. The percentage elongation was affected only by welding speed. The percentage reduction in the area was affected by welding speed and shoulder diameter. The microstructure and microhardness of the weld have been studied and reported in the study.\",\"PeriodicalId\":135907,\"journal\":{\"name\":\"Strojniški vestnik – Journal of Mechanical Engineering\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strojniški vestnik – Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5545/sv-jme.2021.7203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniški vestnik – Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5545/sv-jme.2021.7203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文的研究重点是提高搅拌摩擦焊接碳钢(AISI 1018)的极限抗拉强度。研究了工艺参数(焊接速度、刀具转速、焊肩直径)对响应参数(极限抗拉强度、伸长率和面积收缩率)的影响。采用响应面法建立响应参数的数学模型,并用方差分析(ANOVA)检验模型的充分性。焊接速度和刀具转速对合金的极限抗拉强度有显著影响。伸长率仅受焊接速度的影响。焊接速度和焊肩直径对面积的收缩率有影响。研究报告了焊缝的显微组织和显微硬度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Process Parameters Optimization for Maximizing Tensile Strength in Friction Stir-Welded Carbon Steel
The present study focuses on improving the ultimate tensile strength of friction stir welded carbon steel (AISI 1018). The effect of the process parameters (welding speed, tool RPM, and shoulder diameter) on the response parameters (ultimate tensile strength, percentage elongation and percentage reduction in area) were studied. Response surface methodology was used to develop the mathematical model for response parameters, and the adequacy of the model was checked using analysis of variance (ANOVA). The welding speed and tool RPM were found to affect the ultimate tensile strength significantly. The percentage elongation was affected only by welding speed. The percentage reduction in the area was affected by welding speed and shoulder diameter. The microstructure and microhardness of the weld have been studied and reported in the study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信