无gcp大尺度高分辨率光学卫星图像块平差的gpu加速PCG方法

Qiankun Fu, X. Tong, Shijie Liu, Z. Ye, Yanmin Jin, Hanyu Wang, Z. Hong
{"title":"无gcp大尺度高分辨率光学卫星图像块平差的gpu加速PCG方法","authors":"Qiankun Fu, X. Tong, Shijie Liu, Z. Ye, Yanmin Jin, Hanyu Wang, Z. Hong","doi":"10.14358/pers.22-00051r2","DOIUrl":null,"url":null,"abstract":"The precise geo-positioning of high-resolution satellite imagery (HRSI) without ground control points (GCPs) is an important and fundamental step in global mapping, three-dimensional modeling, and so on. In this paper, to improve the efficiency of large-scale bundle adjustment (BA),\n we propose a combined Preconditioned Conjugate Gradient (PCG) and Graphic Processing Unit (GPU) parallel computing approach for the BA of large-scale HRSI without GCPs. The proposed approach consists of three main components: 1) construction of a BA model without GCPs ; 2) reduction of memory\n consumption using the Compressed Sparse Row sparse matrix format; and 3) improvement of the computational efficiency by the use of the combined PCG and GPU parallel computing method. The experimental results showed that the proposed method: 1) consumes less memory consumption compared to the\n conventional full matrix format method; 2) demonstrates higher computational efficiency than the single-core, Ceres-solver and multi-core central processing unit computing methods, with 9.48, 6.82, and 3.05 times faster than the above three methods, respectively; 3) obtains comparable BA accuracy\n with the above three methods, with image residuals of about 0.9 pixels; and 4) is superior to the parallel bundle adjustment method in the reprojection error.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPU-Accelerated PCG Method for the Block Adjustment of Large-Scale High-Resolution Optical Satellite Imagery Without GCPs\",\"authors\":\"Qiankun Fu, X. Tong, Shijie Liu, Z. Ye, Yanmin Jin, Hanyu Wang, Z. Hong\",\"doi\":\"10.14358/pers.22-00051r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The precise geo-positioning of high-resolution satellite imagery (HRSI) without ground control points (GCPs) is an important and fundamental step in global mapping, three-dimensional modeling, and so on. In this paper, to improve the efficiency of large-scale bundle adjustment (BA),\\n we propose a combined Preconditioned Conjugate Gradient (PCG) and Graphic Processing Unit (GPU) parallel computing approach for the BA of large-scale HRSI without GCPs. The proposed approach consists of three main components: 1) construction of a BA model without GCPs ; 2) reduction of memory\\n consumption using the Compressed Sparse Row sparse matrix format; and 3) improvement of the computational efficiency by the use of the combined PCG and GPU parallel computing method. The experimental results showed that the proposed method: 1) consumes less memory consumption compared to the\\n conventional full matrix format method; 2) demonstrates higher computational efficiency than the single-core, Ceres-solver and multi-core central processing unit computing methods, with 9.48, 6.82, and 3.05 times faster than the above three methods, respectively; 3) obtains comparable BA accuracy\\n with the above three methods, with image residuals of about 0.9 pixels; and 4) is superior to the parallel bundle adjustment method in the reprojection error.\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.22-00051r2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.22-00051r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无地面控制点的高分辨率卫星影像(HRSI)精确地理定位是全球制图、三维建模等领域的重要基础步骤。为了提高大规模束调整(BA)的效率,本文提出了一种结合预条件共轭梯度(PCG)和图形处理单元(GPU)的并行计算方法,用于无gcp的大规模HRSI束调整。该方法主要由三个部分组成:1)构建不含gcp的BA模型;2)使用压缩稀疏行稀疏矩阵格式减少内存消耗;3)采用PCG和GPU相结合的并行计算方法提高了计算效率。实验结果表明:1)与传统的全矩阵格式方法相比,该方法占用的内存较少;2)与单核、Ceres-solver和多核中央处理器计算方法相比,计算效率更高,分别比上述三种方法快9.48倍、6.82倍和3.05倍;3)以上三种方法的BA精度相当,图像残差约为0.9像素;4)在重投影误差上优于平行束平差法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU-Accelerated PCG Method for the Block Adjustment of Large-Scale High-Resolution Optical Satellite Imagery Without GCPs
The precise geo-positioning of high-resolution satellite imagery (HRSI) without ground control points (GCPs) is an important and fundamental step in global mapping, three-dimensional modeling, and so on. In this paper, to improve the efficiency of large-scale bundle adjustment (BA), we propose a combined Preconditioned Conjugate Gradient (PCG) and Graphic Processing Unit (GPU) parallel computing approach for the BA of large-scale HRSI without GCPs. The proposed approach consists of three main components: 1) construction of a BA model without GCPs ; 2) reduction of memory consumption using the Compressed Sparse Row sparse matrix format; and 3) improvement of the computational efficiency by the use of the combined PCG and GPU parallel computing method. The experimental results showed that the proposed method: 1) consumes less memory consumption compared to the conventional full matrix format method; 2) demonstrates higher computational efficiency than the single-core, Ceres-solver and multi-core central processing unit computing methods, with 9.48, 6.82, and 3.05 times faster than the above three methods, respectively; 3) obtains comparable BA accuracy with the above three methods, with image residuals of about 0.9 pixels; and 4) is superior to the parallel bundle adjustment method in the reprojection error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信