基于深度学习和朴素贝叶斯分类模型的多类医疗数据分类框架

N. Ramesh, G. L. Devi, K. S. Sekhara Rao
{"title":"基于深度学习和朴素贝叶斯分类模型的多类医疗数据分类框架","authors":"N. Ramesh, G. L. Devi, K. S. Sekhara Rao","doi":"10.5815/ijieeb.2020.01.05","DOIUrl":null,"url":null,"abstract":"From the past decade there has been drastic development and deployment of digital data stored in electronic health record (EHR). Initially, it is designed for getting patient general information and performing health care tasks like billing, but researchers focused on secondary and most important use of these data for various clinical applications. In this paper we used deep learning based clinical note multi-label multi class approach using GloVe model for feature extraction from text notes, Auto-Encoder for training based on model and Navie basian classification and we map those classes for multiclasses. And we perform experiments with python and we used libraries of keras, tensor flow, numpy, matplotlib and we use MIMIC-III data set. And we made comparison with existing works CNN, skip-gram, n-gram and bag-of words. The performance results shows that proposed frame work performed good while classifying the text notes.","PeriodicalId":427770,"journal":{"name":"International Journal of Information Engineering and Electronic Business","volume":"322 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Frame Work for Classification of Multi Class Medical Data based on Deep Learning and Naive Bayes Classification Model\",\"authors\":\"N. Ramesh, G. L. Devi, K. S. Sekhara Rao\",\"doi\":\"10.5815/ijieeb.2020.01.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the past decade there has been drastic development and deployment of digital data stored in electronic health record (EHR). Initially, it is designed for getting patient general information and performing health care tasks like billing, but researchers focused on secondary and most important use of these data for various clinical applications. In this paper we used deep learning based clinical note multi-label multi class approach using GloVe model for feature extraction from text notes, Auto-Encoder for training based on model and Navie basian classification and we map those classes for multiclasses. And we perform experiments with python and we used libraries of keras, tensor flow, numpy, matplotlib and we use MIMIC-III data set. And we made comparison with existing works CNN, skip-gram, n-gram and bag-of words. The performance results shows that proposed frame work performed good while classifying the text notes.\",\"PeriodicalId\":427770,\"journal\":{\"name\":\"International Journal of Information Engineering and Electronic Business\",\"volume\":\"322 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Engineering and Electronic Business\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijieeb.2020.01.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Engineering and Electronic Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijieeb.2020.01.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在过去的十年中,电子健康记录(EHR)中存储的数字数据得到了迅猛的发展和部署。最初,它的设计目的是获取患者的一般信息,并执行医疗保健任务,如计费,但研究人员关注的是这些数据在各种临床应用中的次要和最重要的用途。在本文中,我们使用基于深度学习的临床笔记多标签多类方法,使用GloVe模型从文本笔记中提取特征,使用Auto-Encoder进行基于模型和Navie basian分类的训练,并将这些类映射为多类。我们用python做实验,我们使用keras, tensor flow, numpy, matplotlib库,我们使用MIMIC-III数据集。并与已有作品CNN、skip-gram、n-gram、bag-of words进行对比。性能结果表明,该框架在文本注释分类方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Frame Work for Classification of Multi Class Medical Data based on Deep Learning and Naive Bayes Classification Model
From the past decade there has been drastic development and deployment of digital data stored in electronic health record (EHR). Initially, it is designed for getting patient general information and performing health care tasks like billing, but researchers focused on secondary and most important use of these data for various clinical applications. In this paper we used deep learning based clinical note multi-label multi class approach using GloVe model for feature extraction from text notes, Auto-Encoder for training based on model and Navie basian classification and we map those classes for multiclasses. And we perform experiments with python and we used libraries of keras, tensor flow, numpy, matplotlib and we use MIMIC-III data set. And we made comparison with existing works CNN, skip-gram, n-gram and bag-of words. The performance results shows that proposed frame work performed good while classifying the text notes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信