高分布数据管理系统中的自适应复制策略

Simone Bottoni, S. Braghin, Alberto Trombetta, S. Venugopal
{"title":"高分布数据管理系统中的自适应复制策略","authors":"Simone Bottoni, S. Braghin, Alberto Trombetta, S. Venugopal","doi":"10.1109/IC2E55432.2022.00036","DOIUrl":null,"url":null,"abstract":"The performance of the execution of an analytical workload critically impacts the speed at which companies are able to react to market changes. In the era of Big Data, it is imperative that large, complex analytics are executed in a timely manner. In this paper, we propose a method to analyze the data access pattern of analytical workloads on large datasets to identify optimal data partitioning and replication strategies. This, in turn, helps the already existing query optimization components of modern data management systems.","PeriodicalId":415781,"journal":{"name":"2022 IEEE International Conference on Cloud Engineering (IC2E)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Replication Strategy in Highly Distributed Data Management Systems\",\"authors\":\"Simone Bottoni, S. Braghin, Alberto Trombetta, S. Venugopal\",\"doi\":\"10.1109/IC2E55432.2022.00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of the execution of an analytical workload critically impacts the speed at which companies are able to react to market changes. In the era of Big Data, it is imperative that large, complex analytics are executed in a timely manner. In this paper, we propose a method to analyze the data access pattern of analytical workloads on large datasets to identify optimal data partitioning and replication strategies. This, in turn, helps the already existing query optimization components of modern data management systems.\",\"PeriodicalId\":415781,\"journal\":{\"name\":\"2022 IEEE International Conference on Cloud Engineering (IC2E)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Cloud Engineering (IC2E)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC2E55432.2022.00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cloud Engineering (IC2E)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E55432.2022.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析工作负载的执行性能会严重影响公司对市场变化的反应速度。在大数据时代,及时执行大型、复杂的分析势在必行。在本文中,我们提出了一种分析大型数据集上分析工作负载的数据访问模式的方法,以确定最佳的数据分区和复制策略。这反过来又有助于现代数据管理系统中已经存在的查询优化组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Replication Strategy in Highly Distributed Data Management Systems
The performance of the execution of an analytical workload critically impacts the speed at which companies are able to react to market changes. In the era of Big Data, it is imperative that large, complex analytics are executed in a timely manner. In this paper, we propose a method to analyze the data access pattern of analytical workloads on large datasets to identify optimal data partitioning and replication strategies. This, in turn, helps the already existing query optimization components of modern data management systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信