网络标量守恒定律的中心方案

M. Herty, N. Kolbe, S. Müller
{"title":"网络标量守恒定律的中心方案","authors":"M. Herty, N. Kolbe, S. Müller","doi":"10.48550/arXiv.2209.05137","DOIUrl":null,"url":null,"abstract":"We propose a novel scheme to numerically solve scalar conservation laws on networks without the necessity to solve Riemann problems at the junction. The scheme is derived using the relaxation system introduced in [Jin and Xin, Comm. Pure. Appl. Math. 48 (1995), 235-276] and taking the relaxation limit also at the nodes of the network. The scheme is mass conservative and yields well defined and easy-to-compute coupling conditions even for general networks. We discuss higher order extension of the scheme and applications to traffic flow and two-phase flow. In the former we compare with results obtained in literature.","PeriodicalId":405126,"journal":{"name":"Networks Heterog. Media","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Central schemes for networked scalar conservation laws\",\"authors\":\"M. Herty, N. Kolbe, S. Müller\",\"doi\":\"10.48550/arXiv.2209.05137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel scheme to numerically solve scalar conservation laws on networks without the necessity to solve Riemann problems at the junction. The scheme is derived using the relaxation system introduced in [Jin and Xin, Comm. Pure. Appl. Math. 48 (1995), 235-276] and taking the relaxation limit also at the nodes of the network. The scheme is mass conservative and yields well defined and easy-to-compute coupling conditions even for general networks. We discuss higher order extension of the scheme and applications to traffic flow and two-phase flow. In the former we compare with results obtained in literature.\",\"PeriodicalId\":405126,\"journal\":{\"name\":\"Networks Heterog. Media\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Networks Heterog. Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.05137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks Heterog. Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.05137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种新的方案来数值求解网络上的标量守恒律,而不需要求解结点处的黎曼问题。该方案是使用[Jin and Xin, Comm. Pure]中介绍的松弛系统推导出来的。达成。数学学报,48(1995),235-276]并在网络节点上取松弛极限。该方案具有质量保守性,即使对于一般网络也能产生定义良好且易于计算的耦合条件。讨论了该方案的高阶推广及其在交通流和两相流中的应用。在前者中,我们与文献中得到的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Central schemes for networked scalar conservation laws
We propose a novel scheme to numerically solve scalar conservation laws on networks without the necessity to solve Riemann problems at the junction. The scheme is derived using the relaxation system introduced in [Jin and Xin, Comm. Pure. Appl. Math. 48 (1995), 235-276] and taking the relaxation limit also at the nodes of the network. The scheme is mass conservative and yields well defined and easy-to-compute coupling conditions even for general networks. We discuss higher order extension of the scheme and applications to traffic flow and two-phase flow. In the former we compare with results obtained in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信