字节级大规模多语言语义解析

M. Nicosia, Francesco Piccinno
{"title":"字节级大规模多语言语义解析","authors":"M. Nicosia, Francesco Piccinno","doi":"10.18653/v1/2022.mmnlu-1.3","DOIUrl":null,"url":null,"abstract":"Token free approaches have been successfully applied to a series of word and span level tasks. In this work, we evaluate a byte-level sequence to sequence model (ByT5) on the 51 languages in the MASSIVE multilingual semantic parsing dataset. We examine multiple experimental settings: (i) zero-shot, (ii) full gold data and (iii) zero-shot with synthetic data. By leveraging a state-of-the-art label projection method for machine translated examples, we are able to reduce the gap in exact match to only 5 points with respect to a model trained on gold data from all the languages. We additionally provide insights on the cross-lingual transfer of ByT5 and show how the model compares with respect to mT5 across all parameter sizes.","PeriodicalId":375461,"journal":{"name":"Proceedings of the Massively Multilingual Natural Language Understanding Workshop (MMNLU-22)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Byte-Level Massively Multilingual Semantic Parsing\",\"authors\":\"M. Nicosia, Francesco Piccinno\",\"doi\":\"10.18653/v1/2022.mmnlu-1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Token free approaches have been successfully applied to a series of word and span level tasks. In this work, we evaluate a byte-level sequence to sequence model (ByT5) on the 51 languages in the MASSIVE multilingual semantic parsing dataset. We examine multiple experimental settings: (i) zero-shot, (ii) full gold data and (iii) zero-shot with synthetic data. By leveraging a state-of-the-art label projection method for machine translated examples, we are able to reduce the gap in exact match to only 5 points with respect to a model trained on gold data from all the languages. We additionally provide insights on the cross-lingual transfer of ByT5 and show how the model compares with respect to mT5 across all parameter sizes.\",\"PeriodicalId\":375461,\"journal\":{\"name\":\"Proceedings of the Massively Multilingual Natural Language Understanding Workshop (MMNLU-22)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Massively Multilingual Natural Language Understanding Workshop (MMNLU-22)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.mmnlu-1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Massively Multilingual Natural Language Understanding Workshop (MMNLU-22)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.mmnlu-1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无令牌方法已成功应用于一系列单词和跨级任务。在这项工作中,我们在MASSIVE多语言语义分析数据集中的51种语言上评估了字节级序列到序列模型(ByT5)。我们检查了多个实验设置:(i)零射击,(ii)全金数据和(iii)合成数据的零射击。通过利用机器翻译示例的最先进的标签投影方法,我们能够将精确匹配的差距减少到仅5分,相对于来自所有语言的黄金数据训练的模型。我们还提供了关于ByT5跨语言迁移的见解,并展示了该模型如何在所有参数大小上与mT5进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Byte-Level Massively Multilingual Semantic Parsing
Token free approaches have been successfully applied to a series of word and span level tasks. In this work, we evaluate a byte-level sequence to sequence model (ByT5) on the 51 languages in the MASSIVE multilingual semantic parsing dataset. We examine multiple experimental settings: (i) zero-shot, (ii) full gold data and (iii) zero-shot with synthetic data. By leveraging a state-of-the-art label projection method for machine translated examples, we are able to reduce the gap in exact match to only 5 points with respect to a model trained on gold data from all the languages. We additionally provide insights on the cross-lingual transfer of ByT5 and show how the model compares with respect to mT5 across all parameter sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信