抛物型Schrödinger算子的Hessian公式和估计

Xue-Mei Li
{"title":"抛物型Schrödinger算子的Hessian公式和估计","authors":"Xue-Mei Li","doi":"10.31390/josa.2.3.07","DOIUrl":null,"url":null,"abstract":"We study the Hessian of the fundamental solution to the parabolic problem for weighted Schr\\\"odinger operators of the form $\\frac 12 \\Delta+\\nabla h-V$ proving a second order Feynman-Kac formula and obtaining Hessian estimates. For manifolds with a pole, we use the Jacobian determinant of the exponential map to offset the volume growth of the Riemannian measure and use the semi-classical bridge as a delta measure at $y_0$ to obtain exact Gaussian estimates. \nThese estimates are in terms of bounds on $Ric-2 Hess (h)$, on the curvature operator, and on the cyclic sum of the gradient of the Ricci tensor.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Hessian Formulas and Estimates for Parabolic Schrödinger Operators\",\"authors\":\"Xue-Mei Li\",\"doi\":\"10.31390/josa.2.3.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Hessian of the fundamental solution to the parabolic problem for weighted Schr\\\\\\\"odinger operators of the form $\\\\frac 12 \\\\Delta+\\\\nabla h-V$ proving a second order Feynman-Kac formula and obtaining Hessian estimates. For manifolds with a pole, we use the Jacobian determinant of the exponential map to offset the volume growth of the Riemannian measure and use the semi-classical bridge as a delta measure at $y_0$ to obtain exact Gaussian estimates. \\nThese estimates are in terms of bounds on $Ric-2 Hess (h)$, on the curvature operator, and on the cyclic sum of the gradient of the Ricci tensor.\",\"PeriodicalId\":263604,\"journal\":{\"name\":\"Journal of Stochastic Analysis\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/josa.2.3.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/josa.2.3.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们研究了形式为$\frac 12 \Delta+\nabla h-V$的加权Schrödinger算子的抛物型问题基本解的Hessian,证明了二阶Feynman-Kac公式并得到了Hessian估计。对于具有极点的流形,我们使用指数映射的雅可比行列式来抵消黎曼测度的体积增长,并使用半经典桥作为delta测度($y_0$)来获得精确的高斯估计。这些估计是根据$Ric-2 Hess (h)$,曲率算子,和里奇张量梯度的循环和的界限来估计的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hessian Formulas and Estimates for Parabolic Schrödinger Operators
We study the Hessian of the fundamental solution to the parabolic problem for weighted Schr\"odinger operators of the form $\frac 12 \Delta+\nabla h-V$ proving a second order Feynman-Kac formula and obtaining Hessian estimates. For manifolds with a pole, we use the Jacobian determinant of the exponential map to offset the volume growth of the Riemannian measure and use the semi-classical bridge as a delta measure at $y_0$ to obtain exact Gaussian estimates. These estimates are in terms of bounds on $Ric-2 Hess (h)$, on the curvature operator, and on the cyclic sum of the gradient of the Ricci tensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信