{"title":"跨模态检索的联合图正则化多模态子空间学习","authors":"K. Wang, Wei Wang, R. He, Liang Wang, T. Tan","doi":"10.1109/ACPR.2013.44","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of cross-modal retrieval, where users can search results across various modalities by submitting any modality of query. Since the query and its retrieved results can be of different modalities, how to measure the content similarity between different modalities of data remains a challenge. To address this problem, we propose a joint graph regularized multi-modal subspace learning (JGRMSL) algorithm, which integrates inter-modality similarities and intra-modality similarities into a joint graph regularization to better explore the cross-modal correlation and the local manifold structure in each modality of data. To obtain good class separation, the idea of Linear Discriminant Analysis (LDA) is incorporated into the proposed method by maximizing the between-class covariance of all projected data and minimizing the within-class covariance of all projected data. Experimental results on two public cross-modal datasets demonstrate the effectiveness of our algorithm.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multi-modal Subspace Learning with Joint Graph Regularization for Cross-Modal Retrieval\",\"authors\":\"K. Wang, Wei Wang, R. He, Liang Wang, T. Tan\",\"doi\":\"10.1109/ACPR.2013.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the problem of cross-modal retrieval, where users can search results across various modalities by submitting any modality of query. Since the query and its retrieved results can be of different modalities, how to measure the content similarity between different modalities of data remains a challenge. To address this problem, we propose a joint graph regularized multi-modal subspace learning (JGRMSL) algorithm, which integrates inter-modality similarities and intra-modality similarities into a joint graph regularization to better explore the cross-modal correlation and the local manifold structure in each modality of data. To obtain good class separation, the idea of Linear Discriminant Analysis (LDA) is incorporated into the proposed method by maximizing the between-class covariance of all projected data and minimizing the within-class covariance of all projected data. Experimental results on two public cross-modal datasets demonstrate the effectiveness of our algorithm.\",\"PeriodicalId\":365633,\"journal\":{\"name\":\"2013 2nd IAPR Asian Conference on Pattern Recognition\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 2nd IAPR Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2013.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-modal Subspace Learning with Joint Graph Regularization for Cross-Modal Retrieval
This paper investigates the problem of cross-modal retrieval, where users can search results across various modalities by submitting any modality of query. Since the query and its retrieved results can be of different modalities, how to measure the content similarity between different modalities of data remains a challenge. To address this problem, we propose a joint graph regularized multi-modal subspace learning (JGRMSL) algorithm, which integrates inter-modality similarities and intra-modality similarities into a joint graph regularization to better explore the cross-modal correlation and the local manifold structure in each modality of data. To obtain good class separation, the idea of Linear Discriminant Analysis (LDA) is incorporated into the proposed method by maximizing the between-class covariance of all projected data and minimizing the within-class covariance of all projected data. Experimental results on two public cross-modal datasets demonstrate the effectiveness of our algorithm.