基于切比雪夫多项式近似的简单复合体分布去噪

Sai Kiran Kadambari, Robin Francis, S. P. Chepuri
{"title":"基于切比雪夫多项式近似的简单复合体分布去噪","authors":"Sai Kiran Kadambari, Robin Francis, S. P. Chepuri","doi":"10.23919/eusipco55093.2022.9909593","DOIUrl":null,"url":null,"abstract":"In this work, we focus on denoising smooth signals supported on simplicial complexes in a distributed manner. We assume that the simplicial signals are dominantly smooth on either the lower or upper Laplacian matrices, which are used to compose the so-called Hodge Laplacian matrix. This corresponds to denoising non-harmonic signals on simplicial complexes. We pose the denoising problem as a convex optimization problem, where we assign different weights to the quadratic regularizers related to the upper and lower Hodge Laplacian matrices and express the optimal solution as a sum of simplicial complex operators related to the two Laplacian matrices. We then use the recursive relation of the Chebyshev polynomial to implement these operators in a distributed manner. We demonstrate the efficacy of the developed framework on synthetic and real-world datasets.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed Denoising over Simplicial Complexes using Chebyshev Polynomial Approximation\",\"authors\":\"Sai Kiran Kadambari, Robin Francis, S. P. Chepuri\",\"doi\":\"10.23919/eusipco55093.2022.9909593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we focus on denoising smooth signals supported on simplicial complexes in a distributed manner. We assume that the simplicial signals are dominantly smooth on either the lower or upper Laplacian matrices, which are used to compose the so-called Hodge Laplacian matrix. This corresponds to denoising non-harmonic signals on simplicial complexes. We pose the denoising problem as a convex optimization problem, where we assign different weights to the quadratic regularizers related to the upper and lower Hodge Laplacian matrices and express the optimal solution as a sum of simplicial complex operators related to the two Laplacian matrices. We then use the recursive relation of the Chebyshev polynomial to implement these operators in a distributed manner. We demonstrate the efficacy of the developed framework on synthetic and real-world datasets.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"266 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们专注于以分布式方式对简单复合体支持的平滑信号进行去噪。我们假设简单信号在用于构成所谓的霍奇拉普拉斯矩阵的上下拉普拉斯矩阵上都是平滑的。这对应于对简单复合体上的非谐波信号去噪。我们将去噪问题作为一个凸优化问题,在此问题中,我们对与上下霍奇拉普拉斯矩阵相关的二次正则化器赋予不同的权重,并将最优解表示为与两个拉普拉斯矩阵相关的简单复算子的和。然后,我们使用Chebyshev多项式的递归关系以分布式方式实现这些运算符。我们证明了开发的框架在合成和现实世界数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Denoising over Simplicial Complexes using Chebyshev Polynomial Approximation
In this work, we focus on denoising smooth signals supported on simplicial complexes in a distributed manner. We assume that the simplicial signals are dominantly smooth on either the lower or upper Laplacian matrices, which are used to compose the so-called Hodge Laplacian matrix. This corresponds to denoising non-harmonic signals on simplicial complexes. We pose the denoising problem as a convex optimization problem, where we assign different weights to the quadratic regularizers related to the upper and lower Hodge Laplacian matrices and express the optimal solution as a sum of simplicial complex operators related to the two Laplacian matrices. We then use the recursive relation of the Chebyshev polynomial to implement these operators in a distributed manner. We demonstrate the efficacy of the developed framework on synthetic and real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信