基于高斯混合模型的差分私有密度估计

Yuncheng Wu, Yao Wu, Hui Peng, Juru Zeng, Hong Chen, Cuiping Li
{"title":"基于高斯混合模型的差分私有密度估计","authors":"Yuncheng Wu, Yao Wu, Hui Peng, Juru Zeng, Hong Chen, Cuiping Li","doi":"10.1109/IWQoS.2016.7590445","DOIUrl":null,"url":null,"abstract":"Density estimation can construct an estimate of the probability density function from the observed data. However, such a function may compromise the privacy of individuals. A notable paradigm for offering strong privacy guarantees in data analysis is differential privacy. In this paper, we propose DPGMM, a parametric density estimation algorithm using Gaussian mixtures model (GMM) under differential privacy. GMM is a well-known model that could approximate any distribution and can be solved via Expectation-Maximization (EM) algorithm. The main idea of DPGMM is to add two extra steps after getting the estimated parameters in the M step of each iteration. The first step is the noise adding step, which injects calibrated noise to the estimated parameters according to their L1-sensitivities and privacy budgets. The second step is the post-processing step, which post-processes those noisy parameters that might break their intrinsic characteristics. Extensive experiments using both real and synthetic datasets evaluate the performance of DPGMM, and demonstrate that the proposed method outperforms a state-of-art approach.","PeriodicalId":304978,"journal":{"name":"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Differentially private density estimation via Gaussian mixtures model\",\"authors\":\"Yuncheng Wu, Yao Wu, Hui Peng, Juru Zeng, Hong Chen, Cuiping Li\",\"doi\":\"10.1109/IWQoS.2016.7590445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density estimation can construct an estimate of the probability density function from the observed data. However, such a function may compromise the privacy of individuals. A notable paradigm for offering strong privacy guarantees in data analysis is differential privacy. In this paper, we propose DPGMM, a parametric density estimation algorithm using Gaussian mixtures model (GMM) under differential privacy. GMM is a well-known model that could approximate any distribution and can be solved via Expectation-Maximization (EM) algorithm. The main idea of DPGMM is to add two extra steps after getting the estimated parameters in the M step of each iteration. The first step is the noise adding step, which injects calibrated noise to the estimated parameters according to their L1-sensitivities and privacy budgets. The second step is the post-processing step, which post-processes those noisy parameters that might break their intrinsic characteristics. Extensive experiments using both real and synthetic datasets evaluate the performance of DPGMM, and demonstrate that the proposed method outperforms a state-of-art approach.\",\"PeriodicalId\":304978,\"journal\":{\"name\":\"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWQoS.2016.7590445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2016.7590445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

密度估计可以根据观测数据构造概率密度函数的估计值。然而,这种功能可能会损害个人的隐私。在数据分析中提供强大隐私保障的一个值得注意的范例是差异隐私。本文提出了差分隐私下基于高斯混合模型的参数密度估计算法DPGMM。GMM是一个众所周知的模型,它可以近似任何分布,并可以通过期望最大化(EM)算法求解。DPGMM的主要思想是在每次迭代的M步得到估计参数后,再增加两个额外的步骤。第一步是噪声添加步骤,根据估计参数的l1灵敏度和隐私预算向估计参数注入校准后的噪声。第二步是后处理步骤,即对可能破坏其固有特征的噪声参数进行后处理。使用真实和合成数据集进行的大量实验评估了DPGMM的性能,并证明了所提出的方法优于当前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentially private density estimation via Gaussian mixtures model
Density estimation can construct an estimate of the probability density function from the observed data. However, such a function may compromise the privacy of individuals. A notable paradigm for offering strong privacy guarantees in data analysis is differential privacy. In this paper, we propose DPGMM, a parametric density estimation algorithm using Gaussian mixtures model (GMM) under differential privacy. GMM is a well-known model that could approximate any distribution and can be solved via Expectation-Maximization (EM) algorithm. The main idea of DPGMM is to add two extra steps after getting the estimated parameters in the M step of each iteration. The first step is the noise adding step, which injects calibrated noise to the estimated parameters according to their L1-sensitivities and privacy budgets. The second step is the post-processing step, which post-processes those noisy parameters that might break their intrinsic characteristics. Extensive experiments using both real and synthetic datasets evaluate the performance of DPGMM, and demonstrate that the proposed method outperforms a state-of-art approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信