灌注加权MRI中基于时频分析的运动检测

M. Sushma, Anubha Gupta, J. Sivaswamy
{"title":"灌注加权MRI中基于时频分析的运动检测","authors":"M. Sushma, Anubha Gupta, J. Sivaswamy","doi":"10.1109/NCVPRIPG.2013.6776215","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel automated method to detect motion in perfusion weighted images (PWI), which is a type of magnetic resonance imaging (MRI). In PWI, blood perfusion is measured by injecting an exogenous tracer called bolus into the blood flow of a patient and then tracking it in the brain. PWI requires a long data acquisition time to form a time series of volumes. Hence, motion occurs due to patient's unavoidable movements during a scan, which in turn results into motion corrupted data. There is a necessity of detection of these motion artifacts on captured data for correct disease diagnosis. In PWI, intensity profile gets disturbed due to occurrence of motion and/or bolus passage through the blood vessels. There is no way to distinguish between motion occurrence and bolus passage. In this paper, we propose an efficient time-frequency analysis based motion detection method. We show that proposed method is computationally inexpensive and fast. This method is evaluated on a DSC-MRI sequence with simulated motion of different degrees. We show that our approach detects motion in a few seconds.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-frequency analysis based motion detection in perfusion weighted MRI\",\"authors\":\"M. Sushma, Anubha Gupta, J. Sivaswamy\",\"doi\":\"10.1109/NCVPRIPG.2013.6776215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel automated method to detect motion in perfusion weighted images (PWI), which is a type of magnetic resonance imaging (MRI). In PWI, blood perfusion is measured by injecting an exogenous tracer called bolus into the blood flow of a patient and then tracking it in the brain. PWI requires a long data acquisition time to form a time series of volumes. Hence, motion occurs due to patient's unavoidable movements during a scan, which in turn results into motion corrupted data. There is a necessity of detection of these motion artifacts on captured data for correct disease diagnosis. In PWI, intensity profile gets disturbed due to occurrence of motion and/or bolus passage through the blood vessels. There is no way to distinguish between motion occurrence and bolus passage. In this paper, we propose an efficient time-frequency analysis based motion detection method. We show that proposed method is computationally inexpensive and fast. This method is evaluated on a DSC-MRI sequence with simulated motion of different degrees. We show that our approach detects motion in a few seconds.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的自动检测灌注加权图像(PWI)运动的方法,这是一种磁共振成像(MRI)。在PWI中,血液灌注是通过向患者的血流中注射一种称为bolus的外源性示踪剂,然后在大脑中进行跟踪来测量的。PWI需要较长的数据采集时间来形成时间序列的卷。因此,在扫描过程中,由于患者不可避免的运动而发生运动,这反过来又导致运动损坏数据。为了正确诊断疾病,有必要在捕获的数据上检测这些运动伪影。在PWI中,由于运动和/或药物通过血管,强度分布受到干扰。没有办法区分运动的发生和药丸的通过。本文提出了一种有效的基于时频分析的运动检测方法。结果表明,该方法计算成本低,速度快。该方法在模拟不同程度运动的DSC-MRI序列上进行了评估。我们证明,我们的方法可以在几秒钟内检测到运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-frequency analysis based motion detection in perfusion weighted MRI
In this paper, we present a novel automated method to detect motion in perfusion weighted images (PWI), which is a type of magnetic resonance imaging (MRI). In PWI, blood perfusion is measured by injecting an exogenous tracer called bolus into the blood flow of a patient and then tracking it in the brain. PWI requires a long data acquisition time to form a time series of volumes. Hence, motion occurs due to patient's unavoidable movements during a scan, which in turn results into motion corrupted data. There is a necessity of detection of these motion artifacts on captured data for correct disease diagnosis. In PWI, intensity profile gets disturbed due to occurrence of motion and/or bolus passage through the blood vessels. There is no way to distinguish between motion occurrence and bolus passage. In this paper, we propose an efficient time-frequency analysis based motion detection method. We show that proposed method is computationally inexpensive and fast. This method is evaluated on a DSC-MRI sequence with simulated motion of different degrees. We show that our approach detects motion in a few seconds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信