凸多边形有界非线性系统的非线性控制算法

Olli Jansson, Matt Harris
{"title":"凸多边形有界非线性系统的非线性控制算法","authors":"Olli Jansson, Matt Harris","doi":"10.1109/ietc54973.2022.9796775","DOIUrl":null,"url":null,"abstract":"This paper describes a technique for controlling nonlinear systems. It is assumed that the nonlinearity takes values in a convex polytope, the control appears linearly, and the system can be discretized in time. The technique requires the solution of a finite number of linear feasibility (programming) problems and reconstructs the nonlinear control from these solutions. Several examples are provided to illustrate the technique and results are compared to feedback linearization.","PeriodicalId":251518,"journal":{"name":"2022 Intermountain Engineering, Technology and Computing (IETC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Control Algorithm for Systems with Convex Polytope Bounded Nonlinearities\",\"authors\":\"Olli Jansson, Matt Harris\",\"doi\":\"10.1109/ietc54973.2022.9796775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a technique for controlling nonlinear systems. It is assumed that the nonlinearity takes values in a convex polytope, the control appears linearly, and the system can be discretized in time. The technique requires the solution of a finite number of linear feasibility (programming) problems and reconstructs the nonlinear control from these solutions. Several examples are provided to illustrate the technique and results are compared to feedback linearization.\",\"PeriodicalId\":251518,\"journal\":{\"name\":\"2022 Intermountain Engineering, Technology and Computing (IETC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Intermountain Engineering, Technology and Computing (IETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ietc54973.2022.9796775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Intermountain Engineering, Technology and Computing (IETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ietc54973.2022.9796775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种控制非线性系统的技术。假设非线性在凸多面体上取值,控制呈现线性,系统可以及时离散化。该技术需要解决有限数量的线性可行性(规划)问题,并从这些解中重建非线性控制。给出了几个例子来说明该技术,并将结果与反馈线性化进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Control Algorithm for Systems with Convex Polytope Bounded Nonlinearities
This paper describes a technique for controlling nonlinear systems. It is assumed that the nonlinearity takes values in a convex polytope, the control appears linearly, and the system can be discretized in time. The technique requires the solution of a finite number of linear feasibility (programming) problems and reconstructs the nonlinear control from these solutions. Several examples are provided to illustrate the technique and results are compared to feedback linearization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信