基于并行随机交换算法的高效可靠聚类

L. Nigro, F. Cicirelli, P. Fränti
{"title":"基于并行随机交换算法的高效可靠聚类","authors":"L. Nigro, F. Cicirelli, P. Fränti","doi":"10.1109/DS-RT55542.2022.9932090","DOIUrl":null,"url":null,"abstract":"Solving large-scale clustering problems requires an efficient algorithm which can be implemented also in parallel. K-means would be suitable but it can lead to an inaccurate clustering result. To overcome this problem, we present a parallel version of random swap clustering algorithm. It combines the scalability of k-means with high clustering accuracy. The new clustering method is experimented on top of Java parallel streams and lambda expressions, which offer interesting execution time benefits. The method is applied to standard benchmark datasets, with a varying population size and distribution of managed records, dimensionality of data points and the number of clusters. The experimental results confirm that high quality clustering can be obtained by parallel random swap together with a high time efficiency.","PeriodicalId":243042,"journal":{"name":"2022 IEEE/ACM 26th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient and Reliable Clustering by Parallel Random Swap Algorithm\",\"authors\":\"L. Nigro, F. Cicirelli, P. Fränti\",\"doi\":\"10.1109/DS-RT55542.2022.9932090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving large-scale clustering problems requires an efficient algorithm which can be implemented also in parallel. K-means would be suitable but it can lead to an inaccurate clustering result. To overcome this problem, we present a parallel version of random swap clustering algorithm. It combines the scalability of k-means with high clustering accuracy. The new clustering method is experimented on top of Java parallel streams and lambda expressions, which offer interesting execution time benefits. The method is applied to standard benchmark datasets, with a varying population size and distribution of managed records, dimensionality of data points and the number of clusters. The experimental results confirm that high quality clustering can be obtained by parallel random swap together with a high time efficiency.\",\"PeriodicalId\":243042,\"journal\":{\"name\":\"2022 IEEE/ACM 26th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 26th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DS-RT55542.2022.9932090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 26th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DS-RT55542.2022.9932090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

解决大规模聚类问题需要一种高效的算法,并且可以并行实现。K-means是合适的,但它可能导致不准确的聚类结果。为了克服这个问题,我们提出了一个并行版本的随机交换聚类算法。它结合了k-means的可扩展性和高聚类精度。新的集群方法在Java并行流和lambda表达式上进行了实验,它们提供了有趣的执行时间优势。该方法适用于具有不同人口规模和管理记录分布、数据点维度和聚类数量的标准基准数据集。实验结果表明,并行随机交换可以获得高质量的聚类,同时具有较高的时间效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient and Reliable Clustering by Parallel Random Swap Algorithm
Solving large-scale clustering problems requires an efficient algorithm which can be implemented also in parallel. K-means would be suitable but it can lead to an inaccurate clustering result. To overcome this problem, we present a parallel version of random swap clustering algorithm. It combines the scalability of k-means with high clustering accuracy. The new clustering method is experimented on top of Java parallel streams and lambda expressions, which offer interesting execution time benefits. The method is applied to standard benchmark datasets, with a varying population size and distribution of managed records, dimensionality of data points and the number of clusters. The experimental results confirm that high quality clustering can be obtained by parallel random swap together with a high time efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信