{"title":"两轮机器人非线性最优控制的可控性研究与实现","authors":"Surapong Kokkrathoke, Xu Xu","doi":"10.1109/ICSPC53359.2021.9689177","DOIUrl":null,"url":null,"abstract":"This paper presents the benefits of controllability study, used to facilitate the implementation of a nonlinear optimal controller. The controllability technique can be applied to investigate the controllable ranges of different state-space models from the same physical system. Once the controllability of each mathematical model is established, controllable parts from different models are selected to build a new joint model before implementing the nonlinear freezing optimal control and extended Kalman filter. When applied to a two-wheel LEGO EV3 robot, the novel mixing model demonstrates excellent stabilising control results compared against both previous models by: 1) producing smoother transient behaviour with less oscillations and 2) demonstrating a broader initial pitch angle range for stabilisation using a nonlinear optimal controller.","PeriodicalId":331220,"journal":{"name":"2021 IEEE 9th Conference on Systems, Process and Control (ICSPC 2021)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllability Study of Two-Wheel Robot for Nonlinear Optimal Control and Implementation\",\"authors\":\"Surapong Kokkrathoke, Xu Xu\",\"doi\":\"10.1109/ICSPC53359.2021.9689177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the benefits of controllability study, used to facilitate the implementation of a nonlinear optimal controller. The controllability technique can be applied to investigate the controllable ranges of different state-space models from the same physical system. Once the controllability of each mathematical model is established, controllable parts from different models are selected to build a new joint model before implementing the nonlinear freezing optimal control and extended Kalman filter. When applied to a two-wheel LEGO EV3 robot, the novel mixing model demonstrates excellent stabilising control results compared against both previous models by: 1) producing smoother transient behaviour with less oscillations and 2) demonstrating a broader initial pitch angle range for stabilisation using a nonlinear optimal controller.\",\"PeriodicalId\":331220,\"journal\":{\"name\":\"2021 IEEE 9th Conference on Systems, Process and Control (ICSPC 2021)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 9th Conference on Systems, Process and Control (ICSPC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPC53359.2021.9689177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th Conference on Systems, Process and Control (ICSPC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPC53359.2021.9689177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Controllability Study of Two-Wheel Robot for Nonlinear Optimal Control and Implementation
This paper presents the benefits of controllability study, used to facilitate the implementation of a nonlinear optimal controller. The controllability technique can be applied to investigate the controllable ranges of different state-space models from the same physical system. Once the controllability of each mathematical model is established, controllable parts from different models are selected to build a new joint model before implementing the nonlinear freezing optimal control and extended Kalman filter. When applied to a two-wheel LEGO EV3 robot, the novel mixing model demonstrates excellent stabilising control results compared against both previous models by: 1) producing smoother transient behaviour with less oscillations and 2) demonstrating a broader initial pitch angle range for stabilisation using a nonlinear optimal controller.