可视化缺失值

Jonas Sjöbergh, Yuzuru Tanaka
{"title":"可视化缺失值","authors":"Jonas Sjöbergh, Yuzuru Tanaka","doi":"10.1109/iV.2017.12","DOIUrl":null,"url":null,"abstract":"Many real world data sets have data items with missing values. Values can be missing for many different reasons, such as sensor failure, respondents forgetting or refusing to answer a question in a survey, or a certain feature not being applicable to certain subsets of data. When visualizing data, some visualizations can easily handle missing values, while for others it is not obvious how to represent them without the resulting visualization being misleading. We give examples of different ways our system for interactive visual exploration of data handles missing data. These examples come from real world big data projects we took part in. Different ways to visualize missing values work well with different visualizations. Coordinated multiple views is a powerful way to visualize data with missing values, and having several views of the data helps explore the properties of the items with missing values.","PeriodicalId":410876,"journal":{"name":"2017 21st International Conference Information Visualisation (IV)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Visualizing Missing Values\",\"authors\":\"Jonas Sjöbergh, Yuzuru Tanaka\",\"doi\":\"10.1109/iV.2017.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many real world data sets have data items with missing values. Values can be missing for many different reasons, such as sensor failure, respondents forgetting or refusing to answer a question in a survey, or a certain feature not being applicable to certain subsets of data. When visualizing data, some visualizations can easily handle missing values, while for others it is not obvious how to represent them without the resulting visualization being misleading. We give examples of different ways our system for interactive visual exploration of data handles missing data. These examples come from real world big data projects we took part in. Different ways to visualize missing values work well with different visualizations. Coordinated multiple views is a powerful way to visualize data with missing values, and having several views of the data helps explore the properties of the items with missing values.\",\"PeriodicalId\":410876,\"journal\":{\"name\":\"2017 21st International Conference Information Visualisation (IV)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 21st International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iV.2017.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iV.2017.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

许多现实世界的数据集都有缺失值的数据项。值可能由于许多不同的原因而丢失,例如传感器故障,受访者忘记或拒绝回答调查中的问题,或者某些特征不适用于某些数据子集。在对数据进行可视化时,有些可视化可以很容易地处理缺失的值,而对于其他可视化来说,如何在不产生误导的情况下表示它们并不明显。我们给出了我们的系统处理丢失数据的交互式可视化探索的不同方式的例子。这些例子来自我们参与的现实世界的大数据项目。不同的方法可以很好地可视化缺失值。协调的多个视图是可视化缺少值的数据的一种强大方式,拥有多个数据视图有助于探索缺少值的项的属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing Missing Values
Many real world data sets have data items with missing values. Values can be missing for many different reasons, such as sensor failure, respondents forgetting or refusing to answer a question in a survey, or a certain feature not being applicable to certain subsets of data. When visualizing data, some visualizations can easily handle missing values, while for others it is not obvious how to represent them without the resulting visualization being misleading. We give examples of different ways our system for interactive visual exploration of data handles missing data. These examples come from real world big data projects we took part in. Different ways to visualize missing values work well with different visualizations. Coordinated multiple views is a powerful way to visualize data with missing values, and having several views of the data helps explore the properties of the items with missing values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信