基于GPU的矩阵分解的高效并行随机梯度下降算法

Mohamed A. Nassar, Layla A. A. El-Sayed, Y. Taha
{"title":"基于GPU的矩阵分解的高效并行随机梯度下降算法","authors":"Mohamed A. Nassar, Layla A. A. El-Sayed, Y. Taha","doi":"10.1109/ICITST.2016.7856668","DOIUrl":null,"url":null,"abstract":"Matrix factorization is an advanced and efficient technique for recommender systems. Recently, Stochastic Gradient Descent (SGD) method is considered to be one of the most popular techniques for matrix factorization. SGD is a sequential algorithm, which is difficult to be parallelized for large-scale problems. Nowadays, researches focus on efficiently parallelizing SGD. In this research, we propose an efficient parallel SGD method, ESGD, for GPU. ESGD is more efficient than recent parallel methods because it utilizes GPU, reducing non-coalesced access of global memory and achieving load balance of threads. In addition, ESGD does not require any sorting and/or data shuffling as preprocessing phase. Although platform used for ESGD implementation is old, ESGD demonstrates 12.5× speedup over state-of-the-art GPU method, BSGD.","PeriodicalId":258740,"journal":{"name":"2016 11th International Conference for Internet Technology and Secured Transactions (ICITST)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient parallel Stochastic Gradient Descent for matrix factorization using GPU\",\"authors\":\"Mohamed A. Nassar, Layla A. A. El-Sayed, Y. Taha\",\"doi\":\"10.1109/ICITST.2016.7856668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix factorization is an advanced and efficient technique for recommender systems. Recently, Stochastic Gradient Descent (SGD) method is considered to be one of the most popular techniques for matrix factorization. SGD is a sequential algorithm, which is difficult to be parallelized for large-scale problems. Nowadays, researches focus on efficiently parallelizing SGD. In this research, we propose an efficient parallel SGD method, ESGD, for GPU. ESGD is more efficient than recent parallel methods because it utilizes GPU, reducing non-coalesced access of global memory and achieving load balance of threads. In addition, ESGD does not require any sorting and/or data shuffling as preprocessing phase. Although platform used for ESGD implementation is old, ESGD demonstrates 12.5× speedup over state-of-the-art GPU method, BSGD.\",\"PeriodicalId\":258740,\"journal\":{\"name\":\"2016 11th International Conference for Internet Technology and Secured Transactions (ICITST)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 11th International Conference for Internet Technology and Secured Transactions (ICITST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITST.2016.7856668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Conference for Internet Technology and Secured Transactions (ICITST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITST.2016.7856668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

矩阵分解是一种先进、高效的推荐系统技术。随机梯度下降法(SGD)是目前最流行的矩阵分解方法之一。SGD算法是一种顺序算法,难以对大规模问题进行并行化。目前研究的重点是高效并行化SGD。在本研究中,我们提出了一种高效的GPU并行SGD方法ESGD。ESGD比最近的并行方法更高效,因为它利用了GPU,减少了对全局内存的非合并访问,实现了线程的负载平衡。此外,ESGD不需要任何排序和/或数据变换作为预处理阶段。虽然用于ESGD实现的平台是旧的,但ESGD比最先进的GPU方法BSGD的速度提高了12.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient parallel Stochastic Gradient Descent for matrix factorization using GPU
Matrix factorization is an advanced and efficient technique for recommender systems. Recently, Stochastic Gradient Descent (SGD) method is considered to be one of the most popular techniques for matrix factorization. SGD is a sequential algorithm, which is difficult to be parallelized for large-scale problems. Nowadays, researches focus on efficiently parallelizing SGD. In this research, we propose an efficient parallel SGD method, ESGD, for GPU. ESGD is more efficient than recent parallel methods because it utilizes GPU, reducing non-coalesced access of global memory and achieving load balance of threads. In addition, ESGD does not require any sorting and/or data shuffling as preprocessing phase. Although platform used for ESGD implementation is old, ESGD demonstrates 12.5× speedup over state-of-the-art GPU method, BSGD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信