面向关系数据库的可伸缩自底向上数据挖掘算法

G. Giuffrida, Lee G. Cooper, W. Chu
{"title":"面向关系数据库的可伸缩自底向上数据挖掘算法","authors":"G. Giuffrida, Lee G. Cooper, W. Chu","doi":"10.1109/SSDM.1998.688125","DOIUrl":null,"url":null,"abstract":"Machine learning induction algorithms are difficult to scale to very large databases because of their memory-bound nature. Using virtual memory results in a significant performance degradation. To overcome such shortcomings, we developed a classification rule induction algorithm for relational databases. Our algorithm uses a bottom-up rule generation strategy that is more effective for mining databases having large cardinality of nominal variables. We have successfully used our algorithm to mine a retail grocery database containing more than 1.6 million records in about 5 hours on a dual Pentium processor PC.","PeriodicalId":120937,"journal":{"name":"Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A scalable bottom-up data mining algorithm for relational databases\",\"authors\":\"G. Giuffrida, Lee G. Cooper, W. Chu\",\"doi\":\"10.1109/SSDM.1998.688125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning induction algorithms are difficult to scale to very large databases because of their memory-bound nature. Using virtual memory results in a significant performance degradation. To overcome such shortcomings, we developed a classification rule induction algorithm for relational databases. Our algorithm uses a bottom-up rule generation strategy that is more effective for mining databases having large cardinality of nominal variables. We have successfully used our algorithm to mine a retail grocery database containing more than 1.6 million records in about 5 hours on a dual Pentium processor PC.\",\"PeriodicalId\":120937,\"journal\":{\"name\":\"Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSDM.1998.688125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDM.1998.688125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

机器学习归纳算法很难扩展到非常大的数据库,因为它们的内存限制的性质。使用虚拟内存会导致显著的性能下降。为了克服这些缺点,我们开发了一种面向关系数据库的分类规则归纳算法。我们的算法使用自下而上的规则生成策略,该策略对于挖掘具有大量名义变量基数的数据库更有效。我们已经成功地使用我们的算法在一台双奔腾处理器的PC上在大约5小时内挖掘了一个包含160多万条记录的零售杂货数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A scalable bottom-up data mining algorithm for relational databases
Machine learning induction algorithms are difficult to scale to very large databases because of their memory-bound nature. Using virtual memory results in a significant performance degradation. To overcome such shortcomings, we developed a classification rule induction algorithm for relational databases. Our algorithm uses a bottom-up rule generation strategy that is more effective for mining databases having large cardinality of nominal variables. We have successfully used our algorithm to mine a retail grocery database containing more than 1.6 million records in about 5 hours on a dual Pentium processor PC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信