{"title":"面向关系数据库的可伸缩自底向上数据挖掘算法","authors":"G. Giuffrida, Lee G. Cooper, W. Chu","doi":"10.1109/SSDM.1998.688125","DOIUrl":null,"url":null,"abstract":"Machine learning induction algorithms are difficult to scale to very large databases because of their memory-bound nature. Using virtual memory results in a significant performance degradation. To overcome such shortcomings, we developed a classification rule induction algorithm for relational databases. Our algorithm uses a bottom-up rule generation strategy that is more effective for mining databases having large cardinality of nominal variables. We have successfully used our algorithm to mine a retail grocery database containing more than 1.6 million records in about 5 hours on a dual Pentium processor PC.","PeriodicalId":120937,"journal":{"name":"Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A scalable bottom-up data mining algorithm for relational databases\",\"authors\":\"G. Giuffrida, Lee G. Cooper, W. Chu\",\"doi\":\"10.1109/SSDM.1998.688125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning induction algorithms are difficult to scale to very large databases because of their memory-bound nature. Using virtual memory results in a significant performance degradation. To overcome such shortcomings, we developed a classification rule induction algorithm for relational databases. Our algorithm uses a bottom-up rule generation strategy that is more effective for mining databases having large cardinality of nominal variables. We have successfully used our algorithm to mine a retail grocery database containing more than 1.6 million records in about 5 hours on a dual Pentium processor PC.\",\"PeriodicalId\":120937,\"journal\":{\"name\":\"Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSDM.1998.688125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDM.1998.688125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A scalable bottom-up data mining algorithm for relational databases
Machine learning induction algorithms are difficult to scale to very large databases because of their memory-bound nature. Using virtual memory results in a significant performance degradation. To overcome such shortcomings, we developed a classification rule induction algorithm for relational databases. Our algorithm uses a bottom-up rule generation strategy that is more effective for mining databases having large cardinality of nominal variables. We have successfully used our algorithm to mine a retail grocery database containing more than 1.6 million records in about 5 hours on a dual Pentium processor PC.