基于块化HLAC的木材识别新方法

Lingran Ma, Hang-jun Wang
{"title":"基于块化HLAC的木材识别新方法","authors":"Lingran Ma, Hang-jun Wang","doi":"10.1109/ICNC.2012.6234674","DOIUrl":null,"url":null,"abstract":"This paper propose a new method for wood recognition based on texture analysis. At first, wood texture images are divided into several blocks in our method. Secondly, wood features are extracted from these blocked grey-scale images using different mask, which is knows as higher-order local autocorrelation (HLAC). Finally, Support Vector Machine (SVM) was used to verify the performance of the method. Experiments carried on the wood texture database demonstrate that our method outperforms the original HLAC method.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new method for wood recognition based on blocked HLAC\",\"authors\":\"Lingran Ma, Hang-jun Wang\",\"doi\":\"10.1109/ICNC.2012.6234674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper propose a new method for wood recognition based on texture analysis. At first, wood texture images are divided into several blocks in our method. Secondly, wood features are extracted from these blocked grey-scale images using different mask, which is knows as higher-order local autocorrelation (HLAC). Finally, Support Vector Machine (SVM) was used to verify the performance of the method. Experiments carried on the wood texture database demonstrate that our method outperforms the original HLAC method.\",\"PeriodicalId\":404981,\"journal\":{\"name\":\"2012 8th International Conference on Natural Computation\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于纹理分析的木材识别新方法。首先,我们的方法将木材纹理图像分成几个块。其次,使用不同的掩模从这些灰度块图像中提取木材特征,即高阶局部自相关(HLAC)。最后,利用支持向量机(SVM)验证了该方法的性能。在木材纹理数据库上进行的实验表明,我们的方法优于原始的HLAC方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for wood recognition based on blocked HLAC
This paper propose a new method for wood recognition based on texture analysis. At first, wood texture images are divided into several blocks in our method. Secondly, wood features are extracted from these blocked grey-scale images using different mask, which is knows as higher-order local autocorrelation (HLAC). Finally, Support Vector Machine (SVM) was used to verify the performance of the method. Experiments carried on the wood texture database demonstrate that our method outperforms the original HLAC method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信