一般楔的两态守恒积分和应力奇异性

S. Im, Youngmin Lee
{"title":"一般楔的两态守恒积分和应力奇异性","authors":"S. Im, Youngmin Lee","doi":"10.1115/imece1999-0624","DOIUrl":null,"url":null,"abstract":"\n The eigenvalues of Williams’ series expansion for generalized wedge problems, which include cracks, re-entrant corners, free edges, and cracks meeting with material interface, etc. are examined from the viewpoint of conservation laws like J-integral and M-integral. By use of the so-called two-state conservation laws or interaction energy, originally proposed by Eshelby and later treated by Chen and Shield, discussed is that the complementary pairs of eigenvalues exist in the J-integral sense and/or in the M-integral sense when these integrals are conserved. Similar results are shown to hold for the eigenvalues of three dimensional wedges.","PeriodicalId":270413,"journal":{"name":"Recent Advances in Solids and Structures","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-State Conservation Integrals and Stress Singularities in Generic Wedges\",\"authors\":\"S. Im, Youngmin Lee\",\"doi\":\"10.1115/imece1999-0624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The eigenvalues of Williams’ series expansion for generalized wedge problems, which include cracks, re-entrant corners, free edges, and cracks meeting with material interface, etc. are examined from the viewpoint of conservation laws like J-integral and M-integral. By use of the so-called two-state conservation laws or interaction energy, originally proposed by Eshelby and later treated by Chen and Shield, discussed is that the complementary pairs of eigenvalues exist in the J-integral sense and/or in the M-integral sense when these integrals are conserved. Similar results are shown to hold for the eigenvalues of three dimensional wedges.\",\"PeriodicalId\":270413,\"journal\":{\"name\":\"Recent Advances in Solids and Structures\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Solids and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1999-0624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Solids and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-0624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从j积分和m积分等守恒定律的角度,研究了广义楔形问题的Williams级数展开式的特征值。广义楔形问题包括裂纹、可重入角、自由边和与材料界面接触的裂纹等。利用最初由Eshelby提出,后来由Chen和Shield处理的所谓的两态守恒定律或相互作用能,讨论了当这些积分守恒时,特征值的互补对在j积分意义上和/或在m积分意义上存在。类似的结果也适用于三维楔形的特征值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-State Conservation Integrals and Stress Singularities in Generic Wedges
The eigenvalues of Williams’ series expansion for generalized wedge problems, which include cracks, re-entrant corners, free edges, and cracks meeting with material interface, etc. are examined from the viewpoint of conservation laws like J-integral and M-integral. By use of the so-called two-state conservation laws or interaction energy, originally proposed by Eshelby and later treated by Chen and Shield, discussed is that the complementary pairs of eigenvalues exist in the J-integral sense and/or in the M-integral sense when these integrals are conserved. Similar results are shown to hold for the eigenvalues of three dimensional wedges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信