三维合成数据集的生成

V. Kugurakova, Vitaly Abramov, Daniil Ivanovich Kostiuk, R. Sharaeva, Rim Radikovich Gazizova, M. Khafizov
{"title":"三维合成数据集的生成","authors":"V. Kugurakova, Vitaly Abramov, Daniil Ivanovich Kostiuk, R. Sharaeva, Rim Radikovich Gazizova, M. Khafizov","doi":"10.26907/1562-5419-2021-24-4-622-652","DOIUrl":null,"url":null,"abstract":"The work is devoted to the description of the process of developing a universal toolkit for generating synthetic data for training various neural networks. The approach used has shown its success and effectiveness in solving various problems, in particular, training a neural network to recognize shopping behavior inside stores through surveillance cameras and training a neural network for recognizing spaces with augmented reality devices without using auxiliary infrared cameras. Generalizing conclusions allow planning the further development of technologies for generating three-dimensional synthetic data.","PeriodicalId":262909,"journal":{"name":"Russian Digital Libraries Journal","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generation of Three-Dimensional Synthetic Datasets\",\"authors\":\"V. Kugurakova, Vitaly Abramov, Daniil Ivanovich Kostiuk, R. Sharaeva, Rim Radikovich Gazizova, M. Khafizov\",\"doi\":\"10.26907/1562-5419-2021-24-4-622-652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work is devoted to the description of the process of developing a universal toolkit for generating synthetic data for training various neural networks. The approach used has shown its success and effectiveness in solving various problems, in particular, training a neural network to recognize shopping behavior inside stores through surveillance cameras and training a neural network for recognizing spaces with augmented reality devices without using auxiliary infrared cameras. Generalizing conclusions allow planning the further development of technologies for generating three-dimensional synthetic data.\",\"PeriodicalId\":262909,\"journal\":{\"name\":\"Russian Digital Libraries Journal\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Digital Libraries Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26907/1562-5419-2021-24-4-622-652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Digital Libraries Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/1562-5419-2021-24-4-622-652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

该工作致力于描述开发用于生成用于训练各种神经网络的合成数据的通用工具包的过程。该方法在通过监控摄像头训练神经网络识别商店内的购物行为,以及在不使用辅助红外摄像头的情况下使用增强现实设备训练神经网络识别空间等各种问题上显示出了成功和有效性。概括结论有助于规划生成三维合成数据的技术的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation of Three-Dimensional Synthetic Datasets
The work is devoted to the description of the process of developing a universal toolkit for generating synthetic data for training various neural networks. The approach used has shown its success and effectiveness in solving various problems, in particular, training a neural network to recognize shopping behavior inside stores through surveillance cameras and training a neural network for recognizing spaces with augmented reality devices without using auxiliary infrared cameras. Generalizing conclusions allow planning the further development of technologies for generating three-dimensional synthetic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信