H. Kalantarian, C. Sideris, Tuan Le, Christine E. King, M. Sarrafzadeh
{"title":"连续传感器信号的概率分割框架","authors":"H. Kalantarian, C. Sideris, Tuan Le, Christine E. King, M. Sarrafzadeh","doi":"10.1109/BSN.2016.7516226","DOIUrl":null,"url":null,"abstract":"Among the major challenges in the realization of practical health monitoring systems is the identification of short-duration events from larger signals. Time-series segmentation refers to the challenge of subdividing a continuous stream of data into discrete windows, which are individually processed using statistical classifiers to recognize various activities or events. In this paper, we propose a probabilistic algorithm for segmenting time-series signals, in which window boundaries are dynamically adjusted when the probability of correct classification is low. Our proposed scheme is benchmarked using an audio-based nutrition-monitoring case-study. Our evaluation shows that algorithm improves the number of correctly classified instances from a baseline of 75% to 94% using the RandomForest classifier.","PeriodicalId":205735,"journal":{"name":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"775 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A framework for probabilistic segmentation of continuous sensor signals\",\"authors\":\"H. Kalantarian, C. Sideris, Tuan Le, Christine E. King, M. Sarrafzadeh\",\"doi\":\"10.1109/BSN.2016.7516226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the major challenges in the realization of practical health monitoring systems is the identification of short-duration events from larger signals. Time-series segmentation refers to the challenge of subdividing a continuous stream of data into discrete windows, which are individually processed using statistical classifiers to recognize various activities or events. In this paper, we propose a probabilistic algorithm for segmenting time-series signals, in which window boundaries are dynamically adjusted when the probability of correct classification is low. Our proposed scheme is benchmarked using an audio-based nutrition-monitoring case-study. Our evaluation shows that algorithm improves the number of correctly classified instances from a baseline of 75% to 94% using the RandomForest classifier.\",\"PeriodicalId\":205735,\"journal\":{\"name\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"775 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2016.7516226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2016.7516226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A framework for probabilistic segmentation of continuous sensor signals
Among the major challenges in the realization of practical health monitoring systems is the identification of short-duration events from larger signals. Time-series segmentation refers to the challenge of subdividing a continuous stream of data into discrete windows, which are individually processed using statistical classifiers to recognize various activities or events. In this paper, we propose a probabilistic algorithm for segmenting time-series signals, in which window boundaries are dynamically adjusted when the probability of correct classification is low. Our proposed scheme is benchmarked using an audio-based nutrition-monitoring case-study. Our evaluation shows that algorithm improves the number of correctly classified instances from a baseline of 75% to 94% using the RandomForest classifier.