连续传感器信号的概率分割框架

H. Kalantarian, C. Sideris, Tuan Le, Christine E. King, M. Sarrafzadeh
{"title":"连续传感器信号的概率分割框架","authors":"H. Kalantarian, C. Sideris, Tuan Le, Christine E. King, M. Sarrafzadeh","doi":"10.1109/BSN.2016.7516226","DOIUrl":null,"url":null,"abstract":"Among the major challenges in the realization of practical health monitoring systems is the identification of short-duration events from larger signals. Time-series segmentation refers to the challenge of subdividing a continuous stream of data into discrete windows, which are individually processed using statistical classifiers to recognize various activities or events. In this paper, we propose a probabilistic algorithm for segmenting time-series signals, in which window boundaries are dynamically adjusted when the probability of correct classification is low. Our proposed scheme is benchmarked using an audio-based nutrition-monitoring case-study. Our evaluation shows that algorithm improves the number of correctly classified instances from a baseline of 75% to 94% using the RandomForest classifier.","PeriodicalId":205735,"journal":{"name":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"775 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A framework for probabilistic segmentation of continuous sensor signals\",\"authors\":\"H. Kalantarian, C. Sideris, Tuan Le, Christine E. King, M. Sarrafzadeh\",\"doi\":\"10.1109/BSN.2016.7516226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the major challenges in the realization of practical health monitoring systems is the identification of short-duration events from larger signals. Time-series segmentation refers to the challenge of subdividing a continuous stream of data into discrete windows, which are individually processed using statistical classifiers to recognize various activities or events. In this paper, we propose a probabilistic algorithm for segmenting time-series signals, in which window boundaries are dynamically adjusted when the probability of correct classification is low. Our proposed scheme is benchmarked using an audio-based nutrition-monitoring case-study. Our evaluation shows that algorithm improves the number of correctly classified instances from a baseline of 75% to 94% using the RandomForest classifier.\",\"PeriodicalId\":205735,\"journal\":{\"name\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"775 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2016.7516226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2016.7516226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

实现实际健康监测系统的主要挑战之一是从较大的信号中识别短时间事件。时间序列分割是指将连续的数据流细分为离散窗口的挑战,这些窗口使用统计分类器进行单独处理以识别各种活动或事件。本文提出了一种时间序列信号分割的概率算法,该算法在正确分类概率较低时动态调整窗口边界。我们提出的方案采用基于音频的营养监测案例研究作为基准。我们的评估表明,使用RandomForest分类器,该算法将正确分类实例的数量从基线的75%提高到94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A framework for probabilistic segmentation of continuous sensor signals
Among the major challenges in the realization of practical health monitoring systems is the identification of short-duration events from larger signals. Time-series segmentation refers to the challenge of subdividing a continuous stream of data into discrete windows, which are individually processed using statistical classifiers to recognize various activities or events. In this paper, we propose a probabilistic algorithm for segmenting time-series signals, in which window boundaries are dynamically adjusted when the probability of correct classification is low. Our proposed scheme is benchmarked using an audio-based nutrition-monitoring case-study. Our evaluation shows that algorithm improves the number of correctly classified instances from a baseline of 75% to 94% using the RandomForest classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信