基于最大熵模型的情感词识别

Xiaoxu Fei, Huizhen Wang, Jingbo Zhu
{"title":"基于最大熵模型的情感词识别","authors":"Xiaoxu Fei, Huizhen Wang, Jingbo Zhu","doi":"10.1109/NLPKE.2010.5587811","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of sentiment word identification given an opinionated sentence, which is very important in sentiment analysis tasks. The most common way to tackle this problem is to utilize a readily available sentiment lexicon such as HowNet or SentiWordNet to determine whether a word is a sentiment word. However, in practice, words existing in the lexicon sometimes can not express sentiment tendency in a certain context while other words out of the lexicon do express. To address this challenge, this paper presents an approach based on maximum-entropy classification model to identify sentiment words given an opinionated sentence. Experimental results show that our approach outperforms baseline lexicon-based methods.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Sentiment word identification using the maximum entropy model\",\"authors\":\"Xiaoxu Fei, Huizhen Wang, Jingbo Zhu\",\"doi\":\"10.1109/NLPKE.2010.5587811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the issue of sentiment word identification given an opinionated sentence, which is very important in sentiment analysis tasks. The most common way to tackle this problem is to utilize a readily available sentiment lexicon such as HowNet or SentiWordNet to determine whether a word is a sentiment word. However, in practice, words existing in the lexicon sometimes can not express sentiment tendency in a certain context while other words out of the lexicon do express. To address this challenge, this paper presents an approach based on maximum-entropy classification model to identify sentiment words given an opinionated sentence. Experimental results show that our approach outperforms baseline lexicon-based methods.\",\"PeriodicalId\":259975,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NLPKE.2010.5587811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文研究了在情感分析任务中非常重要的一个问题,即给定一个自以为是句子的情感词识别问题。解决这个问题最常见的方法是利用现成的情感词典,如HowNet或SentiWordNet来确定一个词是否为情感词。然而,在实践中,词典中存在的词汇有时不能表达特定语境下的情感倾向,而词典外的词汇却能表达情感倾向。为了解决这一挑战,本文提出了一种基于最大熵分类模型的方法来识别给定固执己见句子的情感词。实验结果表明,我们的方法优于基于词典的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment word identification using the maximum entropy model
This paper addresses the issue of sentiment word identification given an opinionated sentence, which is very important in sentiment analysis tasks. The most common way to tackle this problem is to utilize a readily available sentiment lexicon such as HowNet or SentiWordNet to determine whether a word is a sentiment word. However, in practice, words existing in the lexicon sometimes can not express sentiment tendency in a certain context while other words out of the lexicon do express. To address this challenge, this paper presents an approach based on maximum-entropy classification model to identify sentiment words given an opinionated sentence. Experimental results show that our approach outperforms baseline lexicon-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信