Fahd Husain, Pascale Proulx, Meng-Wei Chang, Rosa Romero Gómez, H. Vasquez
{"title":"定性因果建模的混合主动视觉分析方法","authors":"Fahd Husain, Pascale Proulx, Meng-Wei Chang, Rosa Romero Gómez, H. Vasquez","doi":"10.1109/VIS49827.2021.9623318","DOIUrl":null,"url":null,"abstract":"Modeling complex systems is a time-consuming, difficult and fragmented task, often requiring the analyst to work with disparate data, a variety of models, and expert knowledge across a diverse set of domains. Applying a user-centered design process, we developed a mixed-initiative visual analytics approach, a subset of the Causemos platform, that allows analysts to rapidly assemble qualitative causal models of complex socio-natural systems. Our approach facilitates the construction, exploration, and curation of qualitative models bringing together data across disparate domains. Referencing a recent user evaluation, we demonstrate our approach’s ability to interactively enrich user mental models and accelerate qualitative model building.","PeriodicalId":387572,"journal":{"name":"2021 IEEE Visualization Conference (VIS)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Mixed-Initiative Visual Analytics Approach for Qualitative Causal Modeling\",\"authors\":\"Fahd Husain, Pascale Proulx, Meng-Wei Chang, Rosa Romero Gómez, H. Vasquez\",\"doi\":\"10.1109/VIS49827.2021.9623318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling complex systems is a time-consuming, difficult and fragmented task, often requiring the analyst to work with disparate data, a variety of models, and expert knowledge across a diverse set of domains. Applying a user-centered design process, we developed a mixed-initiative visual analytics approach, a subset of the Causemos platform, that allows analysts to rapidly assemble qualitative causal models of complex socio-natural systems. Our approach facilitates the construction, exploration, and curation of qualitative models bringing together data across disparate domains. Referencing a recent user evaluation, we demonstrate our approach’s ability to interactively enrich user mental models and accelerate qualitative model building.\",\"PeriodicalId\":387572,\"journal\":{\"name\":\"2021 IEEE Visualization Conference (VIS)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Visualization Conference (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIS49827.2021.9623318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS49827.2021.9623318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Mixed-Initiative Visual Analytics Approach for Qualitative Causal Modeling
Modeling complex systems is a time-consuming, difficult and fragmented task, often requiring the analyst to work with disparate data, a variety of models, and expert knowledge across a diverse set of domains. Applying a user-centered design process, we developed a mixed-initiative visual analytics approach, a subset of the Causemos platform, that allows analysts to rapidly assemble qualitative causal models of complex socio-natural systems. Our approach facilitates the construction, exploration, and curation of qualitative models bringing together data across disparate domains. Referencing a recent user evaluation, we demonstrate our approach’s ability to interactively enrich user mental models and accelerate qualitative model building.