定性因果建模的混合主动视觉分析方法

Fahd Husain, Pascale Proulx, Meng-Wei Chang, Rosa Romero Gómez, H. Vasquez
{"title":"定性因果建模的混合主动视觉分析方法","authors":"Fahd Husain, Pascale Proulx, Meng-Wei Chang, Rosa Romero Gómez, H. Vasquez","doi":"10.1109/VIS49827.2021.9623318","DOIUrl":null,"url":null,"abstract":"Modeling complex systems is a time-consuming, difficult and fragmented task, often requiring the analyst to work with disparate data, a variety of models, and expert knowledge across a diverse set of domains. Applying a user-centered design process, we developed a mixed-initiative visual analytics approach, a subset of the Causemos platform, that allows analysts to rapidly assemble qualitative causal models of complex socio-natural systems. Our approach facilitates the construction, exploration, and curation of qualitative models bringing together data across disparate domains. Referencing a recent user evaluation, we demonstrate our approach’s ability to interactively enrich user mental models and accelerate qualitative model building.","PeriodicalId":387572,"journal":{"name":"2021 IEEE Visualization Conference (VIS)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Mixed-Initiative Visual Analytics Approach for Qualitative Causal Modeling\",\"authors\":\"Fahd Husain, Pascale Proulx, Meng-Wei Chang, Rosa Romero Gómez, H. Vasquez\",\"doi\":\"10.1109/VIS49827.2021.9623318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling complex systems is a time-consuming, difficult and fragmented task, often requiring the analyst to work with disparate data, a variety of models, and expert knowledge across a diverse set of domains. Applying a user-centered design process, we developed a mixed-initiative visual analytics approach, a subset of the Causemos platform, that allows analysts to rapidly assemble qualitative causal models of complex socio-natural systems. Our approach facilitates the construction, exploration, and curation of qualitative models bringing together data across disparate domains. Referencing a recent user evaluation, we demonstrate our approach’s ability to interactively enrich user mental models and accelerate qualitative model building.\",\"PeriodicalId\":387572,\"journal\":{\"name\":\"2021 IEEE Visualization Conference (VIS)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Visualization Conference (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIS49827.2021.9623318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS49827.2021.9623318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对复杂系统进行建模是一项耗时、困难且分散的任务,通常需要分析人员处理不同的数据、各种模型和跨不同领域的专家知识。应用以用户为中心的设计过程,我们开发了一种混合主动的可视化分析方法,这是Causemos平台的一个子集,它允许分析人员快速组装复杂社会自然系统的定性因果模型。我们的方法促进了将不同领域的数据整合在一起的定性模型的构建、探索和管理。引用最近的用户评估,我们展示了我们的方法能够交互式地丰富用户心理模型并加速定性模型的构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mixed-Initiative Visual Analytics Approach for Qualitative Causal Modeling
Modeling complex systems is a time-consuming, difficult and fragmented task, often requiring the analyst to work with disparate data, a variety of models, and expert knowledge across a diverse set of domains. Applying a user-centered design process, we developed a mixed-initiative visual analytics approach, a subset of the Causemos platform, that allows analysts to rapidly assemble qualitative causal models of complex socio-natural systems. Our approach facilitates the construction, exploration, and curation of qualitative models bringing together data across disparate domains. Referencing a recent user evaluation, we demonstrate our approach’s ability to interactively enrich user mental models and accelerate qualitative model building.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信