分析当地城市Twitter上的旅游信息

Kazutaka Shimada, Shunsuke Inoue, H. Maeda, Tsutomu Endo
{"title":"分析当地城市Twitter上的旅游信息","authors":"Kazutaka Shimada, Shunsuke Inoue, H. Maeda, Tsutomu Endo","doi":"10.1109/SSNE.2011.27","DOIUrl":null,"url":null,"abstract":"Tourism for a local city is one of the most important key industries. The Web contains much information for the tourism, such as impressions and sentiments about sightseeing areas. Analyzing the information is a significant task for tourism informatics. In this paper, we propose a tourism information analysis system for a local city. The target resource for the analysis is information on Twitter. First, we discuss a method to extract tweets (posted sentences) relating to the target locations and tourism events. Then, we analyze the polarity of the extracted tweets; positive or negative opinions. It is well-known as a P/N classification task in natural language processing. For the process, we employ an unsupervised machine learning approach that uses seed words. We evaluate and consider the extraction and P/N classification tasks. The experimental result about P/N classification shows the effectiveness of our method.","PeriodicalId":131008,"journal":{"name":"2011 First ACIS International Symposium on Software and Network Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Analyzing Tourism Information on Twitter for a Local City\",\"authors\":\"Kazutaka Shimada, Shunsuke Inoue, H. Maeda, Tsutomu Endo\",\"doi\":\"10.1109/SSNE.2011.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tourism for a local city is one of the most important key industries. The Web contains much information for the tourism, such as impressions and sentiments about sightseeing areas. Analyzing the information is a significant task for tourism informatics. In this paper, we propose a tourism information analysis system for a local city. The target resource for the analysis is information on Twitter. First, we discuss a method to extract tweets (posted sentences) relating to the target locations and tourism events. Then, we analyze the polarity of the extracted tweets; positive or negative opinions. It is well-known as a P/N classification task in natural language processing. For the process, we employ an unsupervised machine learning approach that uses seed words. We evaluate and consider the extraction and P/N classification tasks. The experimental result about P/N classification shows the effectiveness of our method.\",\"PeriodicalId\":131008,\"journal\":{\"name\":\"2011 First ACIS International Symposium on Software and Network Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 First ACIS International Symposium on Software and Network Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSNE.2011.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 First ACIS International Symposium on Software and Network Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSNE.2011.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

旅游业是一个地方城市最重要的关键产业之一。网上有很多旅游信息,比如对观光地区的印象和感想。旅游信息分析是旅游信息学的一项重要任务。本文提出了一个地方城市旅游信息分析系统。分析的目标资源是Twitter上的信息。首先,我们讨论了一种提取与目标地点和旅游事件相关的tweet(发布的句子)的方法。然后,我们分析提取的推文的极性;积极或消极的意见。它被称为自然语言处理中的P/N分类任务。在这个过程中,我们采用了一种使用种子词的无监督机器学习方法。我们评估并考虑了提取和P/N分类任务。P/N分类的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing Tourism Information on Twitter for a Local City
Tourism for a local city is one of the most important key industries. The Web contains much information for the tourism, such as impressions and sentiments about sightseeing areas. Analyzing the information is a significant task for tourism informatics. In this paper, we propose a tourism information analysis system for a local city. The target resource for the analysis is information on Twitter. First, we discuss a method to extract tweets (posted sentences) relating to the target locations and tourism events. Then, we analyze the polarity of the extracted tweets; positive or negative opinions. It is well-known as a P/N classification task in natural language processing. For the process, we employ an unsupervised machine learning approach that uses seed words. We evaluate and consider the extraction and P/N classification tasks. The experimental result about P/N classification shows the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信