{"title":"使用异位图和支持向量回归的OCR性能预测","authors":"T. Bhowmik, T. Paquet, N. Ragot","doi":"10.1109/DAS.2014.72","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a novel and simple technique for prediction of OCR results without using any OCR. The technique uses a bag of allographs to characterize textual components. Then a support vector regression (SVR) technique is used to build a predictor based on the bag of allographs. The performance of the system is evaluated on a corpus of historical documents. The proposed technique produces correct prediction of OCR results on training and test documents within the range of standard deviation of 4.18% and 6.54% respectively. The proposed system has been designed as a tool to assist selection of corpora in libraries and specify the typical performance that can be expected on the selection.","PeriodicalId":220495,"journal":{"name":"2014 11th IAPR International Workshop on Document Analysis Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"OCR Performance Prediction Using a Bag of Allographs and Support Vector Regression\",\"authors\":\"T. Bhowmik, T. Paquet, N. Ragot\",\"doi\":\"10.1109/DAS.2014.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a novel and simple technique for prediction of OCR results without using any OCR. The technique uses a bag of allographs to characterize textual components. Then a support vector regression (SVR) technique is used to build a predictor based on the bag of allographs. The performance of the system is evaluated on a corpus of historical documents. The proposed technique produces correct prediction of OCR results on training and test documents within the range of standard deviation of 4.18% and 6.54% respectively. The proposed system has been designed as a tool to assist selection of corpora in libraries and specify the typical performance that can be expected on the selection.\",\"PeriodicalId\":220495,\"journal\":{\"name\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAS.2014.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2014.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
OCR Performance Prediction Using a Bag of Allographs and Support Vector Regression
In this paper, we describe a novel and simple technique for prediction of OCR results without using any OCR. The technique uses a bag of allographs to characterize textual components. Then a support vector regression (SVR) technique is used to build a predictor based on the bag of allographs. The performance of the system is evaluated on a corpus of historical documents. The proposed technique produces correct prediction of OCR results on training and test documents within the range of standard deviation of 4.18% and 6.54% respectively. The proposed system has been designed as a tool to assist selection of corpora in libraries and specify the typical performance that can be expected on the selection.