神经网络在线性/非线性微波建模中的应用

Lei Zhang, Kui Bo, Q. Zhang
{"title":"神经网络在线性/非线性微波建模中的应用","authors":"Lei Zhang, Kui Bo, Q. Zhang","doi":"10.1109/MWSCAS.2007.4488602","DOIUrl":null,"url":null,"abstract":"This paper presents an overview of emerging artificial neural network (ANN) techniques for linear and nonlinear microwave modeling. ANN based models can automatically learn the microwave component or circuit behaviors with satisfactory accuracy, and the trained ANN models are able to implement into commercial circuit simulators for efficient design and optimization. ANN modeling techniques are successfully applied on EM, nonlinear device, and circuit behavior modeling, with speed and accuracy advantages over conventional techniques.","PeriodicalId":256061,"journal":{"name":"2007 50th Midwest Symposium on Circuits and Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of neural networks for linear/nonlinear microwave modeling\",\"authors\":\"Lei Zhang, Kui Bo, Q. Zhang\",\"doi\":\"10.1109/MWSCAS.2007.4488602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an overview of emerging artificial neural network (ANN) techniques for linear and nonlinear microwave modeling. ANN based models can automatically learn the microwave component or circuit behaviors with satisfactory accuracy, and the trained ANN models are able to implement into commercial circuit simulators for efficient design and optimization. ANN modeling techniques are successfully applied on EM, nonlinear device, and circuit behavior modeling, with speed and accuracy advantages over conventional techniques.\",\"PeriodicalId\":256061,\"journal\":{\"name\":\"2007 50th Midwest Symposium on Circuits and Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 50th Midwest Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2007.4488602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 50th Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2007.4488602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了用于线性和非线性微波建模的新兴人工神经网络技术。基于人工神经网络的模型能够以满意的精度自动学习微波元件或电路的行为,并且训练后的人工神经网络模型能够应用到商用电路模拟器中进行有效的设计和优化。人工神经网络建模技术已成功地应用于电磁、非线性器件和电路行为建模,具有速度和精度优于传统技术的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of neural networks for linear/nonlinear microwave modeling
This paper presents an overview of emerging artificial neural network (ANN) techniques for linear and nonlinear microwave modeling. ANN based models can automatically learn the microwave component or circuit behaviors with satisfactory accuracy, and the trained ANN models are able to implement into commercial circuit simulators for efficient design and optimization. ANN modeling techniques are successfully applied on EM, nonlinear device, and circuit behavior modeling, with speed and accuracy advantages over conventional techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信