核电:PRA与防护系统维护

E. Kee, M. Wortman
{"title":"核电:PRA与防护系统维护","authors":"E. Kee, M. Wortman","doi":"10.1115/imece2021-73035","DOIUrl":null,"url":null,"abstract":"\n The processes used in managing protective system equipment failures in the commercial nuclear power setting are reviewed. We assert that efficacy of protection is governed by maintenance policy that includes system modification, maintenance inter-arrivals as a function of time, and upset inter-arrivals as a function of time; we further assert that such a maintenance policy is the one used in nuclear power plant protective systems. Observations described in this article bear on the impact of time-dependent activities, associated with maintenance policy, as they relate to endogenous and exogenous upset inter-arrival times. We describe why methods evaluating maintenance policy reliant on combinatorial logic, such as Probabilistic Risk Assessment (PRA), fault trees, or event trees, may lead to ineffective maintenance policy decision-making for protective system efficacy, and we show why this is true. Recommendations for maintaining effective protections, and connections to engineering maintenance practice and regulations are made based on the implications that come from our observations. The importance of the issues described is that relationship of design, maintenance, and repair policies must be properly understood and taken into account by process owners, operators, and investors as well as regulators, who manage protections in hazardous processes.","PeriodicalId":146533,"journal":{"name":"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nuclear Power: On PRA and Protective System Maintenance\",\"authors\":\"E. Kee, M. Wortman\",\"doi\":\"10.1115/imece2021-73035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The processes used in managing protective system equipment failures in the commercial nuclear power setting are reviewed. We assert that efficacy of protection is governed by maintenance policy that includes system modification, maintenance inter-arrivals as a function of time, and upset inter-arrivals as a function of time; we further assert that such a maintenance policy is the one used in nuclear power plant protective systems. Observations described in this article bear on the impact of time-dependent activities, associated with maintenance policy, as they relate to endogenous and exogenous upset inter-arrival times. We describe why methods evaluating maintenance policy reliant on combinatorial logic, such as Probabilistic Risk Assessment (PRA), fault trees, or event trees, may lead to ineffective maintenance policy decision-making for protective system efficacy, and we show why this is true. Recommendations for maintaining effective protections, and connections to engineering maintenance practice and regulations are made based on the implications that come from our observations. The importance of the issues described is that relationship of design, maintenance, and repair policies must be properly understood and taken into account by process owners, operators, and investors as well as regulators, who manage protections in hazardous processes.\",\"PeriodicalId\":146533,\"journal\":{\"name\":\"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-73035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-73035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在商业核电设置中用于管理保护系统设备故障的过程进行了审查。我们断言,保护的有效性受维护政策的支配,该政策包括系统修改、维护间隔到达作为时间的函数和破坏间隔到达作为时间的函数;我们进一步断言,这种维护政策是在核电站保护系统中使用的政策。本文中描述的观察结果涉及与维护政策相关的时间依赖性活动的影响,因为它们与内源性和外源性的到达间隔时间有关。我们描述了为什么评估维护策略的方法依赖于组合逻辑,如概率风险评估(PRA)、故障树或事件树,可能导致对保护系统有效性的无效维护策略决策,并说明了为什么这是正确的。维护有效保护的建议,以及与工程维护实践和法规的联系是基于我们观察到的影响而提出的。所描述的问题的重要性在于,过程所有者、操作员、投资者以及管理危险过程保护的管理者必须正确理解和考虑设计、维护和维修策略之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nuclear Power: On PRA and Protective System Maintenance
The processes used in managing protective system equipment failures in the commercial nuclear power setting are reviewed. We assert that efficacy of protection is governed by maintenance policy that includes system modification, maintenance inter-arrivals as a function of time, and upset inter-arrivals as a function of time; we further assert that such a maintenance policy is the one used in nuclear power plant protective systems. Observations described in this article bear on the impact of time-dependent activities, associated with maintenance policy, as they relate to endogenous and exogenous upset inter-arrival times. We describe why methods evaluating maintenance policy reliant on combinatorial logic, such as Probabilistic Risk Assessment (PRA), fault trees, or event trees, may lead to ineffective maintenance policy decision-making for protective system efficacy, and we show why this is true. Recommendations for maintaining effective protections, and connections to engineering maintenance practice and regulations are made based on the implications that come from our observations. The importance of the issues described is that relationship of design, maintenance, and repair policies must be properly understood and taken into account by process owners, operators, and investors as well as regulators, who manage protections in hazardous processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信