某些特殊图的固有(强)彩虹连接和固有(强)彩虹顶点连接

Yingbin Ma, Yanfeng Xue, Xiaoxue Zhang
{"title":"某些特殊图的固有(强)彩虹连接和固有(强)彩虹顶点连接","authors":"Yingbin Ma, Yanfeng Xue, Xiaoxue Zhang","doi":"10.1142/s0219265922500062","DOIUrl":null,"url":null,"abstract":"The proper rainbow vertex connection number of [Formula: see text], denoted by [Formula: see text], is the smallest number of colors needed to properly color the vertices of [Formula: see text] so that [Formula: see text] is rainbow vertex connected. The proper strong rainbow vertex connection number of [Formula: see text], denoted by [Formula: see text], is the smallest number of colors needed to properly color the vertices of [Formula: see text] so that [Formula: see text] is strong rainbow vertex connected. These two concepts are inspired by the concept of proper (strong) rainbow connection number of graphs. In this paper, we first determine the values of [Formula: see text] and [Formula: see text] for some special graphs, such as all cubic graphs of order [Formula: see text], pencil graphs, circular ladders or Möbius ladders. Secondly, we obtain the values of [Formula: see text] and [Formula: see text] for some special graphs, such as all cubic graphs of order [Formula: see text], paths, cycles, wheels, complete multipartite graphs, pencil graphs, circular ladders and Möbius ladders. Finally, we characterize all the connected graphs [Formula: see text] with [Formula: see text] and [Formula: see text].","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Proper (Strong) Rainbow Connection and Proper (Strong) Rainbow Vertex Connection of Some Special Graphs\",\"authors\":\"Yingbin Ma, Yanfeng Xue, Xiaoxue Zhang\",\"doi\":\"10.1142/s0219265922500062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proper rainbow vertex connection number of [Formula: see text], denoted by [Formula: see text], is the smallest number of colors needed to properly color the vertices of [Formula: see text] so that [Formula: see text] is rainbow vertex connected. The proper strong rainbow vertex connection number of [Formula: see text], denoted by [Formula: see text], is the smallest number of colors needed to properly color the vertices of [Formula: see text] so that [Formula: see text] is strong rainbow vertex connected. These two concepts are inspired by the concept of proper (strong) rainbow connection number of graphs. In this paper, we first determine the values of [Formula: see text] and [Formula: see text] for some special graphs, such as all cubic graphs of order [Formula: see text], pencil graphs, circular ladders or Möbius ladders. Secondly, we obtain the values of [Formula: see text] and [Formula: see text] for some special graphs, such as all cubic graphs of order [Formula: see text], paths, cycles, wheels, complete multipartite graphs, pencil graphs, circular ladders and Möbius ladders. Finally, we characterize all the connected graphs [Formula: see text] with [Formula: see text] and [Formula: see text].\",\"PeriodicalId\":153590,\"journal\":{\"name\":\"J. Interconnect. Networks\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Interconnect. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219265922500062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Interconnect. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265922500062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

【公式:见文】的彩虹顶点连接数,用【公式:见文】表示,是为【公式:见文】的顶点正确上色,使【公式:见文】的彩虹顶点连接所需的最小颜色数。【公式:见文】的适当强彩虹顶点连接数,用【公式:见文】表示,是为【公式:见文】的顶点适当上色,使【公式:见文】为强彩虹顶点连接所需的最小颜色数。这两个概念的灵感来自于图的固有(强)彩虹连接数的概念。在本文中,我们首先确定了一些特殊图的[公式:见文]和[公式:见文]的值,例如所有的三次有序图[公式:见文],铅笔图,圆形阶梯或Möbius阶梯。其次,我们得到了一些特殊图的[公式:见文]和[公式:见文]的值,如所有有序的三次图[公式:见文]、路径、循环、轮子、完全多部图、铅笔图、圆形阶梯和Möbius阶梯。最后,我们用[公式:见文本]和[公式:见文本]来描述所有的连通图[公式:见文本]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proper (Strong) Rainbow Connection and Proper (Strong) Rainbow Vertex Connection of Some Special Graphs
The proper rainbow vertex connection number of [Formula: see text], denoted by [Formula: see text], is the smallest number of colors needed to properly color the vertices of [Formula: see text] so that [Formula: see text] is rainbow vertex connected. The proper strong rainbow vertex connection number of [Formula: see text], denoted by [Formula: see text], is the smallest number of colors needed to properly color the vertices of [Formula: see text] so that [Formula: see text] is strong rainbow vertex connected. These two concepts are inspired by the concept of proper (strong) rainbow connection number of graphs. In this paper, we first determine the values of [Formula: see text] and [Formula: see text] for some special graphs, such as all cubic graphs of order [Formula: see text], pencil graphs, circular ladders or Möbius ladders. Secondly, we obtain the values of [Formula: see text] and [Formula: see text] for some special graphs, such as all cubic graphs of order [Formula: see text], paths, cycles, wheels, complete multipartite graphs, pencil graphs, circular ladders and Möbius ladders. Finally, we characterize all the connected graphs [Formula: see text] with [Formula: see text] and [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信