基于fft的黑盒优化近似

Madison Lee, O. Haddadin, T. Javidi
{"title":"基于fft的黑盒优化近似","authors":"Madison Lee, O. Haddadin, T. Javidi","doi":"10.1109/SSP53291.2023.10208071","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of black-box function optimization. We propose an FFT-based algorithm that adaptively updates the parameters of a bandlimited Gaussian process surrogate model for the function. Our algorithm uses these parameters to construct approximate upper confidence bounds that determine its sampling behavior. We show that when the underlying function can be extended as a periodic function whose bandwidth is sufficiently small relative to the evaluation budget, our models converge to a perfect reconstruction, allowing our algorithm to recover the true optimizer. For periodic bandlimited function spaces, our algorithm has reduced complexity compared to traditional GP-UCB-based algorithms and demonstrates improved robustness.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FFT-Based Approximations for Black-Box Optimization\",\"authors\":\"Madison Lee, O. Haddadin, T. Javidi\",\"doi\":\"10.1109/SSP53291.2023.10208071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of black-box function optimization. We propose an FFT-based algorithm that adaptively updates the parameters of a bandlimited Gaussian process surrogate model for the function. Our algorithm uses these parameters to construct approximate upper confidence bounds that determine its sampling behavior. We show that when the underlying function can be extended as a periodic function whose bandwidth is sufficiently small relative to the evaluation budget, our models converge to a perfect reconstruction, allowing our algorithm to recover the true optimizer. For periodic bandlimited function spaces, our algorithm has reduced complexity compared to traditional GP-UCB-based algorithms and demonstrates improved robustness.\",\"PeriodicalId\":296346,\"journal\":{\"name\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP53291.2023.10208071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了黑盒函数优化问题。我们提出了一种基于fft的算法,该算法自适应地更新函数的带宽限制高斯过程代理模型的参数。我们的算法使用这些参数来构造近似的上置信区间,以确定其采样行为。我们证明,当底层函数可以扩展为一个周期函数,其带宽相对于评估预算足够小时,我们的模型收敛到一个完美的重建,允许我们的算法恢复真正的优化器。对于周期性带宽限制的函数空间,我们的算法与传统的基于gp - ucb的算法相比降低了复杂性,并表现出更好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FFT-Based Approximations for Black-Box Optimization
In this paper, we consider the problem of black-box function optimization. We propose an FFT-based algorithm that adaptively updates the parameters of a bandlimited Gaussian process surrogate model for the function. Our algorithm uses these parameters to construct approximate upper confidence bounds that determine its sampling behavior. We show that when the underlying function can be extended as a periodic function whose bandwidth is sufficiently small relative to the evaluation budget, our models converge to a perfect reconstruction, allowing our algorithm to recover the true optimizer. For periodic bandlimited function spaces, our algorithm has reduced complexity compared to traditional GP-UCB-based algorithms and demonstrates improved robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信