嵌入式人工智能在小功耗抄表装置中的研究与实现

H. Duc, Thao Nguyen Manh, H. T. Le, F. Ferrero
{"title":"嵌入式人工智能在小功耗抄表装置中的研究与实现","authors":"H. Duc, Thao Nguyen Manh, H. T. Le, F. Ferrero","doi":"10.1109/atc52653.2021.9598331","DOIUrl":null,"url":null,"abstract":"This paper presents a system using artificial intelligence deployed on ESP32-Cam to conduct OCR on water meter readings. Data transmission through LoRa technology ensures low-power consumption and long-range data communication. The accuracy of digit classification tasks reaches up to 98%. The lowest current consumption in active and sleep mode is 33.5 mA and 0.2 uA, respectively. With these specifications, the system proposal is proved to be low-power, low-cost, has a long-lasting operating time and can be deployed in widespread use.","PeriodicalId":196900,"journal":{"name":"2021 International Conference on Advanced Technologies for Communications (ATC)","volume":"275 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research and Implement Embedded Artificial Intelligence in Low-Power Water Meter Reading Device\",\"authors\":\"H. Duc, Thao Nguyen Manh, H. T. Le, F. Ferrero\",\"doi\":\"10.1109/atc52653.2021.9598331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a system using artificial intelligence deployed on ESP32-Cam to conduct OCR on water meter readings. Data transmission through LoRa technology ensures low-power consumption and long-range data communication. The accuracy of digit classification tasks reaches up to 98%. The lowest current consumption in active and sleep mode is 33.5 mA and 0.2 uA, respectively. With these specifications, the system proposal is proved to be low-power, low-cost, has a long-lasting operating time and can be deployed in widespread use.\",\"PeriodicalId\":196900,\"journal\":{\"name\":\"2021 International Conference on Advanced Technologies for Communications (ATC)\",\"volume\":\"275 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Advanced Technologies for Communications (ATC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/atc52653.2021.9598331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Advanced Technologies for Communications (ATC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/atc52653.2021.9598331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用人工智能在ESP32-Cam上对水表读数进行OCR的系统。数据传输采用LoRa技术,保证了低功耗和远程数据通信。数字分类任务的准确率高达98%。在活动和睡眠模式下的最低电流消耗分别为33.5 mA和0.2 uA。根据这些规格,该系统方案被证明具有低功耗、低成本、工作时间长、可广泛应用的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research and Implement Embedded Artificial Intelligence in Low-Power Water Meter Reading Device
This paper presents a system using artificial intelligence deployed on ESP32-Cam to conduct OCR on water meter readings. Data transmission through LoRa technology ensures low-power consumption and long-range data communication. The accuracy of digit classification tasks reaches up to 98%. The lowest current consumption in active and sleep mode is 33.5 mA and 0.2 uA, respectively. With these specifications, the system proposal is proved to be low-power, low-cost, has a long-lasting operating time and can be deployed in widespread use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信