针对深度神经网络视觉解释器的黑盒对抗性攻击

Yudai Hirose, Satoshi Ono
{"title":"针对深度神经网络视觉解释器的黑盒对抗性攻击","authors":"Yudai Hirose, Satoshi Ono","doi":"10.23919/MVA57639.2023.10215758","DOIUrl":null,"url":null,"abstract":"With the rapid development of deep neural networks (DNNs), eXplainable AI, which provides a basis for prediction on inputs, has become increasingly important. In addition, DNNs have a vulnerability called an Adversarial Example (AE), which can cause incorrect output by applying special perturbations to inputs. Potential vulnerabilities can also exist in image interpreters such as GradCAM, necessitating their investigation, as these vulnerabilities could potentially result in misdiagnosis within medical imaging. Therefore, this study proposes a black-box adversarial attack method that misleads the image interpreter using Sep-CMA-ES. The proposed method deceptively shifts the focus area of the image interpreter to a different location from that of the original image while maintaining the same predictive labels.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black-box Adversarial Attack against Visual Interpreters for Deep Neural Networks\",\"authors\":\"Yudai Hirose, Satoshi Ono\",\"doi\":\"10.23919/MVA57639.2023.10215758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of deep neural networks (DNNs), eXplainable AI, which provides a basis for prediction on inputs, has become increasingly important. In addition, DNNs have a vulnerability called an Adversarial Example (AE), which can cause incorrect output by applying special perturbations to inputs. Potential vulnerabilities can also exist in image interpreters such as GradCAM, necessitating their investigation, as these vulnerabilities could potentially result in misdiagnosis within medical imaging. Therefore, this study proposes a black-box adversarial attack method that misleads the image interpreter using Sep-CMA-ES. The proposed method deceptively shifts the focus area of the image interpreter to a different location from that of the original image while maintaining the same predictive labels.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10215758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着深度神经网络(dnn)的快速发展,为输入预测提供基础的可解释人工智能(eXplainable AI)变得越来越重要。此外,dnn有一个被称为对抗示例(AE)的漏洞,它可以通过对输入施加特殊的扰动来导致不正确的输出。像GradCAM这样的图像解释器也可能存在潜在的漏洞,需要对其进行调查,因为这些漏洞可能会导致医学成像中的误诊。因此,本研究提出了一种使用Sep-CMA-ES误导图像解释器的黑盒对抗性攻击方法。所提出的方法欺骗性地将图像解释器的焦点区域转移到与原始图像的焦点区域不同的位置,同时保持相同的预测标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Black-box Adversarial Attack against Visual Interpreters for Deep Neural Networks
With the rapid development of deep neural networks (DNNs), eXplainable AI, which provides a basis for prediction on inputs, has become increasingly important. In addition, DNNs have a vulnerability called an Adversarial Example (AE), which can cause incorrect output by applying special perturbations to inputs. Potential vulnerabilities can also exist in image interpreters such as GradCAM, necessitating their investigation, as these vulnerabilities could potentially result in misdiagnosis within medical imaging. Therefore, this study proposes a black-box adversarial attack method that misleads the image interpreter using Sep-CMA-ES. The proposed method deceptively shifts the focus area of the image interpreter to a different location from that of the original image while maintaining the same predictive labels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信