S. Puliafito, T. Bolaño Ortiz, R. Pascual, A. López-Noreña, L. Berná
{"title":"大气气溶胶对安第斯山脉中部积雪反照率的降低:以Tunuyán盆地(阿根廷)为例","authors":"S. Puliafito, T. Bolaño Ortiz, R. Pascual, A. López-Noreña, L. Berná","doi":"10.1109/LAGIRS48042.2020.9165617","DOIUrl":null,"url":null,"abstract":"Changes in snow albedo (SA) on several basins of the central Andes of Argentina are associated with the possible deposition of light-absorbing particles (LAP) in the austral spring. To demonstrate this possibility, we correlate SA with daily data of snow cover (SC), aerosol optical depth (AOD) and land surface temperature (LST) available from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on board NASA Terra satellite during 2000-2016, and other derived parameters such as days after albedo (DAS) and snow precipitation (SP) from the Tropical Rainfall Measuring Mission (TRMM). We used satellite pixels with 100% snow cover to obtain monthly average value of SA, LST, AOD, DAS and SP performing multiple regression analysis. Further, we analysed biomass burning emissions in northem Argentina using MODIS products MCD64 collection C6 as possible source for snow pollution. Aerosol deposition and trajectories were analysed using WRF-Chem atmospheric numerical prediction model, with inventories of regional anthropogenic emissions of own elaboration (lat. 0.025°x long. 0.025°) and the estimation of open burning emissions from the FINN global inventory (Fire INventory from NCAR).","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Snow Albedo Reduction in Central Andes by Atmospheric Aerosols: Case Study on the Tunuyán Basin (Argentina)\",\"authors\":\"S. Puliafito, T. Bolaño Ortiz, R. Pascual, A. López-Noreña, L. Berná\",\"doi\":\"10.1109/LAGIRS48042.2020.9165617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changes in snow albedo (SA) on several basins of the central Andes of Argentina are associated with the possible deposition of light-absorbing particles (LAP) in the austral spring. To demonstrate this possibility, we correlate SA with daily data of snow cover (SC), aerosol optical depth (AOD) and land surface temperature (LST) available from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on board NASA Terra satellite during 2000-2016, and other derived parameters such as days after albedo (DAS) and snow precipitation (SP) from the Tropical Rainfall Measuring Mission (TRMM). We used satellite pixels with 100% snow cover to obtain monthly average value of SA, LST, AOD, DAS and SP performing multiple regression analysis. Further, we analysed biomass burning emissions in northem Argentina using MODIS products MCD64 collection C6 as possible source for snow pollution. Aerosol deposition and trajectories were analysed using WRF-Chem atmospheric numerical prediction model, with inventories of regional anthropogenic emissions of own elaboration (lat. 0.025°x long. 0.025°) and the estimation of open burning emissions from the FINN global inventory (Fire INventory from NCAR).\",\"PeriodicalId\":111863,\"journal\":{\"name\":\"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LAGIRS48042.2020.9165617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9165617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Snow Albedo Reduction in Central Andes by Atmospheric Aerosols: Case Study on the Tunuyán Basin (Argentina)
Changes in snow albedo (SA) on several basins of the central Andes of Argentina are associated with the possible deposition of light-absorbing particles (LAP) in the austral spring. To demonstrate this possibility, we correlate SA with daily data of snow cover (SC), aerosol optical depth (AOD) and land surface temperature (LST) available from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on board NASA Terra satellite during 2000-2016, and other derived parameters such as days after albedo (DAS) and snow precipitation (SP) from the Tropical Rainfall Measuring Mission (TRMM). We used satellite pixels with 100% snow cover to obtain monthly average value of SA, LST, AOD, DAS and SP performing multiple regression analysis. Further, we analysed biomass burning emissions in northem Argentina using MODIS products MCD64 collection C6 as possible source for snow pollution. Aerosol deposition and trajectories were analysed using WRF-Chem atmospheric numerical prediction model, with inventories of regional anthropogenic emissions of own elaboration (lat. 0.025°x long. 0.025°) and the estimation of open burning emissions from the FINN global inventory (Fire INventory from NCAR).