机型通信的联合访问控制和资源分配

Jian Guo, Xuefei Zhang, Ruiqi Wang, Xiaofeng Tao
{"title":"机型通信的联合访问控制和资源分配","authors":"Jian Guo, Xuefei Zhang, Ruiqi Wang, Xiaofeng Tao","doi":"10.1109/ICCCHINAW.2017.8355283","DOIUrl":null,"url":null,"abstract":"As one of the most important components in IoT system, machine type communication (MTC) will definitely play an increasingly important role in the academia and industry in the near future for 5G application. Currently, most of the access control work concentrates on avoiding preamble collision without considering SINR requirement. In order to further improve the number of effective access devices (EADs), we propose a joint access control and resource allocation. Due to the fact that the main characteristics of MTC, distinct from the conventional cellular network, are massive access and small amount of data, we formulate an indicator function optimization problem, rather than a continuous rate function considered in cellular network, to maximize the number of EADs. This optimization problem is NP-hard and highly complex to solve, so we decouple the problem into two sub-problems, then we utilize convex optimization tool (CVX) and Hungarian algorithm to perform the joint access control and resource allocation under multi-cell scenario. Moreover, we derive the optimal closed-form power allocation under 2-cell scenario based on Lagrange KKT method. Simulation results demonstrate that the proposed joint access control and resource allocation scheme can achieve a significant improvement performance on EADs with fewer iterations, compared to some classic access methods.","PeriodicalId":164833,"journal":{"name":"2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Joint access control and resource allocation for machine type communications\",\"authors\":\"Jian Guo, Xuefei Zhang, Ruiqi Wang, Xiaofeng Tao\",\"doi\":\"10.1109/ICCCHINAW.2017.8355283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the most important components in IoT system, machine type communication (MTC) will definitely play an increasingly important role in the academia and industry in the near future for 5G application. Currently, most of the access control work concentrates on avoiding preamble collision without considering SINR requirement. In order to further improve the number of effective access devices (EADs), we propose a joint access control and resource allocation. Due to the fact that the main characteristics of MTC, distinct from the conventional cellular network, are massive access and small amount of data, we formulate an indicator function optimization problem, rather than a continuous rate function considered in cellular network, to maximize the number of EADs. This optimization problem is NP-hard and highly complex to solve, so we decouple the problem into two sub-problems, then we utilize convex optimization tool (CVX) and Hungarian algorithm to perform the joint access control and resource allocation under multi-cell scenario. Moreover, we derive the optimal closed-form power allocation under 2-cell scenario based on Lagrange KKT method. Simulation results demonstrate that the proposed joint access control and resource allocation scheme can achieve a significant improvement performance on EADs with fewer iterations, compared to some classic access methods.\",\"PeriodicalId\":164833,\"journal\":{\"name\":\"2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCHINAW.2017.8355283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCHINAW.2017.8355283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

机器型通信(MTC)作为物联网系统中最重要的组成部分之一,在5G应用的不久的将来,必将在学术界和工业界发挥越来越重要的作用。目前,大多数访问控制工作都集中在避免前导冲突上,而没有考虑信噪比要求。为了进一步提高有效接入设备的数量,我们提出了一种联合接入控制和资源分配的方法。由于MTC不同于传统蜂窝网络的主要特点是接入量大、数据量少,我们提出了一个指标函数优化问题,而不是蜂窝网络中考虑的连续速率函数,以最大化EADs的数量。该优化问题具有np困难且求解复杂度高,因此我们将该问题解耦为两个子问题,然后利用凸优化工具(CVX)和匈牙利算法进行多单元场景下的联合访问控制和资源分配。在此基础上,基于拉格朗日KKT方法,导出了2单元场景下的最优闭型功率分配。仿真结果表明,所提出的联合访问控制和资源分配方案与一些经典的访问方法相比,能够以较少的迭代次数显著提高EADs的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint access control and resource allocation for machine type communications
As one of the most important components in IoT system, machine type communication (MTC) will definitely play an increasingly important role in the academia and industry in the near future for 5G application. Currently, most of the access control work concentrates on avoiding preamble collision without considering SINR requirement. In order to further improve the number of effective access devices (EADs), we propose a joint access control and resource allocation. Due to the fact that the main characteristics of MTC, distinct from the conventional cellular network, are massive access and small amount of data, we formulate an indicator function optimization problem, rather than a continuous rate function considered in cellular network, to maximize the number of EADs. This optimization problem is NP-hard and highly complex to solve, so we decouple the problem into two sub-problems, then we utilize convex optimization tool (CVX) and Hungarian algorithm to perform the joint access control and resource allocation under multi-cell scenario. Moreover, we derive the optimal closed-form power allocation under 2-cell scenario based on Lagrange KKT method. Simulation results demonstrate that the proposed joint access control and resource allocation scheme can achieve a significant improvement performance on EADs with fewer iterations, compared to some classic access methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信