光纤环路中的拓扑Floquet界面态

A. Bisianov, A. Muniz, U. Peschel, O. Egorov
{"title":"光纤环路中的拓扑Floquet界面态","authors":"A. Bisianov, A. Muniz, U. Peschel, O. Egorov","doi":"10.1103/physreva.102.053511","DOIUrl":null,"url":null,"abstract":"We experimentally observe a coexisting pair of topological anomalous Floquet interface states in a (1+1)-dimensional Discrete Photon Walk. We explicitly verify the robustness of these states against local static perturbations respecting chiral symmetry of the system, as well as their vulnerability against non-stationary perturbations. The walk is implemented based on pulses propagating in a pair of coupled fibre loops of dissimilar lengths with dynamically variable mutual coupling. The topological interface is created via phase modulation in one of the loops, which allows for an anomalous Floquet topological transition at the interface.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"368 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Topological Floquet interface states in optical fiber loops\",\"authors\":\"A. Bisianov, A. Muniz, U. Peschel, O. Egorov\",\"doi\":\"10.1103/physreva.102.053511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We experimentally observe a coexisting pair of topological anomalous Floquet interface states in a (1+1)-dimensional Discrete Photon Walk. We explicitly verify the robustness of these states against local static perturbations respecting chiral symmetry of the system, as well as their vulnerability against non-stationary perturbations. The walk is implemented based on pulses propagating in a pair of coupled fibre loops of dissimilar lengths with dynamically variable mutual coupling. The topological interface is created via phase modulation in one of the loops, which allows for an anomalous Floquet topological transition at the interface.\",\"PeriodicalId\":304443,\"journal\":{\"name\":\"arXiv: Optics\",\"volume\":\"368 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.102.053511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreva.102.053511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在(1+1)维离散光子漫步中,我们通过实验观察到一对拓扑异常Floquet界面态共存。我们明确地验证了这些状态对系统手性对称性的局部静态扰动的鲁棒性,以及它们对非平稳扰动的脆弱性。该行走是基于脉冲在一对不同长度的耦合光纤环路中传播,具有动态可变的相互耦合。拓扑界面是通过其中一个环路中的相位调制创建的,这允许在界面处出现异常的Floquet拓扑跃迁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological Floquet interface states in optical fiber loops
We experimentally observe a coexisting pair of topological anomalous Floquet interface states in a (1+1)-dimensional Discrete Photon Walk. We explicitly verify the robustness of these states against local static perturbations respecting chiral symmetry of the system, as well as their vulnerability against non-stationary perturbations. The walk is implemented based on pulses propagating in a pair of coupled fibre loops of dissimilar lengths with dynamically variable mutual coupling. The topological interface is created via phase modulation in one of the loops, which allows for an anomalous Floquet topological transition at the interface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信