偏态分布pstn动态控制的灵敏度分析

R. Chen, Yiran Ma, Siqi Wu, James C. Boerkoel
{"title":"偏态分布pstn动态控制的灵敏度分析","authors":"R. Chen, Yiran Ma, Siqi Wu, James C. Boerkoel","doi":"10.1609/icaps.v33i1.27183","DOIUrl":null,"url":null,"abstract":"Probabilistic Simple Temporal Networks (PSTN) facilitate solving many interesting scheduling problems by characterizing uncertain task durations with unbounded probabilistic distributions. However, most current approaches assess PSTN performance using normal or uniform distributions of temporal uncertainty. This paper explores how well such approaches extend to families of non-symmetric distributions shown to better represent the temporal uncertainty introduced by, e.g., human teammates by building new PSTN benchmarks. We also build probability-aware variations of current approaches that are more reactive to the shape of the underlying distributions. We empirically evaluate the original and modified approaches over well-established PSTN datasets. Our results demonstrate that alignment between the planning model and reality significantly impacts performance. While our ideas for augmenting existing algorithms to better account for human-style uncertainty yield only marginal gains, our results surprisingly demonstrate that existing methods handle positively-skewed temporal uncertainty better.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity Analysis for Dynamic Control of PSTNs with Skewed Distributions\",\"authors\":\"R. Chen, Yiran Ma, Siqi Wu, James C. Boerkoel\",\"doi\":\"10.1609/icaps.v33i1.27183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probabilistic Simple Temporal Networks (PSTN) facilitate solving many interesting scheduling problems by characterizing uncertain task durations with unbounded probabilistic distributions. However, most current approaches assess PSTN performance using normal or uniform distributions of temporal uncertainty. This paper explores how well such approaches extend to families of non-symmetric distributions shown to better represent the temporal uncertainty introduced by, e.g., human teammates by building new PSTN benchmarks. We also build probability-aware variations of current approaches that are more reactive to the shape of the underlying distributions. We empirically evaluate the original and modified approaches over well-established PSTN datasets. Our results demonstrate that alignment between the planning model and reality significantly impacts performance. While our ideas for augmenting existing algorithms to better account for human-style uncertainty yield only marginal gains, our results surprisingly demonstrate that existing methods handle positively-skewed temporal uncertainty better.\",\"PeriodicalId\":239898,\"journal\":{\"name\":\"International Conference on Automated Planning and Scheduling\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Automated Planning and Scheduling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icaps.v33i1.27183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v33i1.27183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

概率简单时态网络(PSTN)通过用无界概率分布来描述不确定的任务持续时间,从而有助于解决许多有趣的调度问题。然而,目前大多数评估PSTN性能的方法都是使用时间不确定性的正态分布或均匀分布。本文探讨了这种方法如何很好地扩展到非对称分布家族,以更好地代表由人类队友通过建立新的PSTN基准引入的时间不确定性。我们还构建了对当前方法的概率感知变体,这些方法对底层分布的形状更敏感。我们在完善的PSTN数据集上对原始和修改的方法进行了实证评估。我们的研究结果表明,规划模型和现实之间的一致性显著影响绩效。虽然我们对现有算法进行扩充以更好地解释人类风格的不确定性的想法只产生了边际收益,但我们的结果令人惊讶地表明,现有方法可以更好地处理正向倾斜的时间不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity Analysis for Dynamic Control of PSTNs with Skewed Distributions
Probabilistic Simple Temporal Networks (PSTN) facilitate solving many interesting scheduling problems by characterizing uncertain task durations with unbounded probabilistic distributions. However, most current approaches assess PSTN performance using normal or uniform distributions of temporal uncertainty. This paper explores how well such approaches extend to families of non-symmetric distributions shown to better represent the temporal uncertainty introduced by, e.g., human teammates by building new PSTN benchmarks. We also build probability-aware variations of current approaches that are more reactive to the shape of the underlying distributions. We empirically evaluate the original and modified approaches over well-established PSTN datasets. Our results demonstrate that alignment between the planning model and reality significantly impacts performance. While our ideas for augmenting existing algorithms to better account for human-style uncertainty yield only marginal gains, our results surprisingly demonstrate that existing methods handle positively-skewed temporal uncertainty better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信