单层高增益法布里-珀罗腔天线

T. Nguyen, Dong-Chul Park, I. Park
{"title":"单层高增益法布里-珀罗腔天线","authors":"T. Nguyen, Dong-Chul Park, I. Park","doi":"10.1109/GSMM.2015.7175106","DOIUrl":null,"url":null,"abstract":"A single layer and single feed high gain Fabry-Perot cavity type antenna is presented in this paper. The antenna is designed to operate at around 22 GHz so that it can be used for K-band applications. An open-ended leaky-wave slit dipole fed by a coplanar waveguide is printed on one side of the substrate whereas a frequency selective surface made of a circular hole array is defined on another side of the substrate; thus forms a substrate-integrated Fabry-Perot cavity. The simulation results show that the proposed feeding structure exhibits a wide impedance bandwidth characteristic and effectively excites the resonance of the substrate cavity simultaneously. After optimization, the antenna is capable of having an impedance bandwidth (VSWR≤2) of about 8%, a maximum gain of about 14 dBi, and a 3-dB gain bandwidth of approximately 1.5% at a resonance frequency of 21.7 GHz.","PeriodicalId":405509,"journal":{"name":"Global Symposium on Millimeter-Waves (GSMM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A single layer high gain Fabry-Perot cavity antenna\",\"authors\":\"T. Nguyen, Dong-Chul Park, I. Park\",\"doi\":\"10.1109/GSMM.2015.7175106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A single layer and single feed high gain Fabry-Perot cavity type antenna is presented in this paper. The antenna is designed to operate at around 22 GHz so that it can be used for K-band applications. An open-ended leaky-wave slit dipole fed by a coplanar waveguide is printed on one side of the substrate whereas a frequency selective surface made of a circular hole array is defined on another side of the substrate; thus forms a substrate-integrated Fabry-Perot cavity. The simulation results show that the proposed feeding structure exhibits a wide impedance bandwidth characteristic and effectively excites the resonance of the substrate cavity simultaneously. After optimization, the antenna is capable of having an impedance bandwidth (VSWR≤2) of about 8%, a maximum gain of about 14 dBi, and a 3-dB gain bandwidth of approximately 1.5% at a resonance frequency of 21.7 GHz.\",\"PeriodicalId\":405509,\"journal\":{\"name\":\"Global Symposium on Millimeter-Waves (GSMM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Symposium on Millimeter-Waves (GSMM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GSMM.2015.7175106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Symposium on Millimeter-Waves (GSMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSMM.2015.7175106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种单层单馈高增益法布里-珀罗腔型天线。该天线被设计为在22ghz左右工作,因此它可以用于k波段应用。在所述衬底的一侧印刷由共面波导馈送的开放式漏波狭缝偶极子,而在所述衬底的另一侧定义由圆孔阵列制成的频率选择表面;从而形成衬底集成的法布里-珀罗腔。仿真结果表明,该馈电结构具有较宽的阻抗带宽特性,同时有效地激发了衬底腔的谐振。优化后的天线在21.7 GHz谐振频率下,阻抗带宽(VSWR≤2)约为8%,最大增益约为14 dBi, 3db增益带宽约为1.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A single layer high gain Fabry-Perot cavity antenna
A single layer and single feed high gain Fabry-Perot cavity type antenna is presented in this paper. The antenna is designed to operate at around 22 GHz so that it can be used for K-band applications. An open-ended leaky-wave slit dipole fed by a coplanar waveguide is printed on one side of the substrate whereas a frequency selective surface made of a circular hole array is defined on another side of the substrate; thus forms a substrate-integrated Fabry-Perot cavity. The simulation results show that the proposed feeding structure exhibits a wide impedance bandwidth characteristic and effectively excites the resonance of the substrate cavity simultaneously. After optimization, the antenna is capable of having an impedance bandwidth (VSWR≤2) of about 8%, a maximum gain of about 14 dBi, and a 3-dB gain bandwidth of approximately 1.5% at a resonance frequency of 21.7 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信