堆栈滤波的局部自适应技术

D. Petrescu, I. Tabus, M. Gabbouj
{"title":"堆栈滤波的局部自适应技术","authors":"D. Petrescu, I. Tabus, M. Gabbouj","doi":"10.5281/ZENODO.36042","DOIUrl":null,"url":null,"abstract":"This paper introduces a new structure for stack filtering, where the filter adapts to the local characteristics encountered in data. Both supervised and unsupervised techniques for optimal design are investigated. We split the image into small regions and select the stack filter to process each region according to the spatial domain or threshold level domain characteristics of the input signal. This method provides a significant improvement potential over the global stack filtering approach. Some local statistics are computed, to build a reduced input space which efficiently describes the most important local characteristics of data. Vector quantization is used for clustering the reduced input space into a small number of regions, and then finding a mapping between reduced input space clusters and the filter space, will result in rules for selecting the best suited stack filter for a given region. The supervised clustering procedures are shown to surpass significantly the global filtering approach.","PeriodicalId":282153,"journal":{"name":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Locally adaptive techniques for stack filtering\",\"authors\":\"D. Petrescu, I. Tabus, M. Gabbouj\",\"doi\":\"10.5281/ZENODO.36042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new structure for stack filtering, where the filter adapts to the local characteristics encountered in data. Both supervised and unsupervised techniques for optimal design are investigated. We split the image into small regions and select the stack filter to process each region according to the spatial domain or threshold level domain characteristics of the input signal. This method provides a significant improvement potential over the global stack filtering approach. Some local statistics are computed, to build a reduced input space which efficiently describes the most important local characteristics of data. Vector quantization is used for clustering the reduced input space into a small number of regions, and then finding a mapping between reduced input space clusters and the filter space, will result in rules for selecting the best suited stack filter for a given region. The supervised clustering procedures are shown to surpass significantly the global filtering approach.\",\"PeriodicalId\":282153,\"journal\":{\"name\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.36042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.36042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一种新的堆栈滤波结构,该滤波器能够适应数据中遇到的局部特征。研究了有监督和无监督两种优化设计方法。我们将图像分割成小区域,并根据输入信号的空间域或阈值水平域特征选择叠加滤波器对每个区域进行处理。与全局堆栈过滤方法相比,该方法提供了显著的改进潜力。计算一些局部统计量,以建立一个简化的输入空间,有效地描述数据的最重要的局部特征。矢量量化用于将简化后的输入空间聚类为少量区域,然后找到简化后的输入空间聚类与滤波器空间之间的映射,从而得到为给定区域选择最适合的堆栈滤波器的规则。有监督聚类方法明显优于全局过滤方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locally adaptive techniques for stack filtering
This paper introduces a new structure for stack filtering, where the filter adapts to the local characteristics encountered in data. Both supervised and unsupervised techniques for optimal design are investigated. We split the image into small regions and select the stack filter to process each region according to the spatial domain or threshold level domain characteristics of the input signal. This method provides a significant improvement potential over the global stack filtering approach. Some local statistics are computed, to build a reduced input space which efficiently describes the most important local characteristics of data. Vector quantization is used for clustering the reduced input space into a small number of regions, and then finding a mapping between reduced input space clusters and the filter space, will result in rules for selecting the best suited stack filter for a given region. The supervised clustering procedures are shown to surpass significantly the global filtering approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信