Hopfield神经网络的全局收敛与伪态抑制

Shigeo Abe
{"title":"Hopfield神经网络的全局收敛与伪态抑制","authors":"Shigeo Abe","doi":"10.1109/IJCNN.1991.170520","DOIUrl":null,"url":null,"abstract":"For the extended sigmoid function which is monotonic and differentiable at any interior point in the output range, the author clarifies the condition that a vertex of a hypercube becomes a local minimum of the Hopfield neural networks and a monotonic convergence region to that minimum. Based on this, a method of analyzing and suppressing spurious states in the networks is derived. It is shown that all the spurious states of the traveling salesman problem for the Hopfield original energy function can be suppressed by the proposed method, and its validity is demonstrated by computer simulations.<<ETX>>","PeriodicalId":211135,"journal":{"name":"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":"{\"title\":\"Global convergence and suppression of spurious states of the Hopfield neural networks\",\"authors\":\"Shigeo Abe\",\"doi\":\"10.1109/IJCNN.1991.170520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the extended sigmoid function which is monotonic and differentiable at any interior point in the output range, the author clarifies the condition that a vertex of a hypercube becomes a local minimum of the Hopfield neural networks and a monotonic convergence region to that minimum. Based on this, a method of analyzing and suppressing spurious states in the networks is derived. It is shown that all the spurious states of the traveling salesman problem for the Hopfield original energy function can be suppressed by the proposed method, and its validity is demonstrated by computer simulations.<<ETX>>\",\"PeriodicalId\":211135,\"journal\":{\"name\":\"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"99\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1991.170520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1991.170520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 99

摘要

对于在输出范围内任意内点单调可微的扩展sigmoid函数,给出了超立方体的一个顶点成为Hopfield神经网络的局部极小值和该极小值的单调收敛域的条件。在此基础上,提出了一种分析和抑制网络中杂散状态的方法。结果表明,对于Hopfield原始能量函数,该方法可以抑制旅行商问题的所有伪态,并通过计算机仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global convergence and suppression of spurious states of the Hopfield neural networks
For the extended sigmoid function which is monotonic and differentiable at any interior point in the output range, the author clarifies the condition that a vertex of a hypercube becomes a local minimum of the Hopfield neural networks and a monotonic convergence region to that minimum. Based on this, a method of analyzing and suppressing spurious states in the networks is derived. It is shown that all the spurious states of the traveling salesman problem for the Hopfield original energy function can be suppressed by the proposed method, and its validity is demonstrated by computer simulations.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信