基于马尔可夫随机场的快速视频对象分割

C. Mak, W. Cham
{"title":"基于马尔可夫随机场的快速视频对象分割","authors":"C. Mak, W. Cham","doi":"10.1109/MMSP.2008.4665101","DOIUrl":null,"url":null,"abstract":"A fast video object segmentation algorithm is proposed in this paper. The algorithm utilizes the motion vectors from blocks with variable block sizes to identify background motion model and moving objects. Markov random field is used to model the foreground field to enhance spatial and temporal continuity of objects. To speed up the segmentation time, time-consuming spatial segmentation techniques are avoided. Instead, spatial information in the form of Walsh Hadamard transform coefficients is utilized to improve segmentation accuracy. Experimental results show that the proposed algorithm can effectively extract moving objects from different kind of video sequences. The computation time of the segmentation process is merely about 75 ms per CIF frame using a normal PC, allowing the algorithm to be applied in real-time applications such as video surveillance and conferencing.","PeriodicalId":402287,"journal":{"name":"2008 IEEE 10th Workshop on Multimedia Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fast video object segmentation using Markov random field\",\"authors\":\"C. Mak, W. Cham\",\"doi\":\"10.1109/MMSP.2008.4665101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fast video object segmentation algorithm is proposed in this paper. The algorithm utilizes the motion vectors from blocks with variable block sizes to identify background motion model and moving objects. Markov random field is used to model the foreground field to enhance spatial and temporal continuity of objects. To speed up the segmentation time, time-consuming spatial segmentation techniques are avoided. Instead, spatial information in the form of Walsh Hadamard transform coefficients is utilized to improve segmentation accuracy. Experimental results show that the proposed algorithm can effectively extract moving objects from different kind of video sequences. The computation time of the segmentation process is merely about 75 ms per CIF frame using a normal PC, allowing the algorithm to be applied in real-time applications such as video surveillance and conferencing.\",\"PeriodicalId\":402287,\"journal\":{\"name\":\"2008 IEEE 10th Workshop on Multimedia Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 10th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2008.4665101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 10th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2008.4665101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种快速的视频目标分割算法。该算法利用可变块大小块的运动向量来识别背景运动模型和运动对象。利用马尔可夫随机场对前景场进行建模,增强目标的时空连续性。为了加快分割速度,避免了耗时的空间分割技术。相反,利用Walsh Hadamard变换系数形式的空间信息来提高分割精度。实验结果表明,该算法可以有效地从不同类型的视频序列中提取运动目标。使用普通PC机,分割过程的计算时间仅为每CIF帧约75ms,允许该算法应用于视频监控和会议等实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast video object segmentation using Markov random field
A fast video object segmentation algorithm is proposed in this paper. The algorithm utilizes the motion vectors from blocks with variable block sizes to identify background motion model and moving objects. Markov random field is used to model the foreground field to enhance spatial and temporal continuity of objects. To speed up the segmentation time, time-consuming spatial segmentation techniques are avoided. Instead, spatial information in the form of Walsh Hadamard transform coefficients is utilized to improve segmentation accuracy. Experimental results show that the proposed algorithm can effectively extract moving objects from different kind of video sequences. The computation time of the segmentation process is merely about 75 ms per CIF frame using a normal PC, allowing the algorithm to be applied in real-time applications such as video surveillance and conferencing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信