利用人工智能和图像处理技术检测城市固体废弃物:文献综述

Esteban Segura-Benavides, Gabriela Marín-Raventós
{"title":"利用人工智能和图像处理技术检测城市固体废弃物:文献综述","authors":"Esteban Segura-Benavides, Gabriela Marín-Raventós","doi":"10.1109/jocici54528.2021.9794347","DOIUrl":null,"url":null,"abstract":"Abstract One of the main problems that governments around the world face is the prevalent presence of solid wastes in their countries. Scattered solid wastes in rural and urban areas cause serious problems to people and the environment. In the last years, different solutions for solid waste management have been developed using technology and artificial intelligence. Computer vision is one of these areas in constant development, with improvements in techniques and algorithms to detect and classify objects in images and videos. By doing a literature review in different databases, we found 17 studies from IEEE, ACM, Science Direct, Springer and IOPScience that address the use of artificial intelligence techniques to detect and classify solid waste deposits using computer images. We analyzed information about the object detection techniques and the dataset used for algorithm training in these studies. We also depicted the metrics used to evaluate the performance, accuracy, and precision to detect garbage on images. Deep learning is the main technique used for image processing. YOLO, Deep CNN and Faster R-CNN are the principal techniques used for classification and detection of solid waste due to their speed and accuracy. These results may be very useful to induce and to guide the development of tools to detect solid waste in our country.","PeriodicalId":339143,"journal":{"name":"2021 IEEE V Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Solid Waste Deposits in Urban Areas using Artificial Intelligence and Image Processing: a Literature Review\",\"authors\":\"Esteban Segura-Benavides, Gabriela Marín-Raventós\",\"doi\":\"10.1109/jocici54528.2021.9794347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract One of the main problems that governments around the world face is the prevalent presence of solid wastes in their countries. Scattered solid wastes in rural and urban areas cause serious problems to people and the environment. In the last years, different solutions for solid waste management have been developed using technology and artificial intelligence. Computer vision is one of these areas in constant development, with improvements in techniques and algorithms to detect and classify objects in images and videos. By doing a literature review in different databases, we found 17 studies from IEEE, ACM, Science Direct, Springer and IOPScience that address the use of artificial intelligence techniques to detect and classify solid waste deposits using computer images. We analyzed information about the object detection techniques and the dataset used for algorithm training in these studies. We also depicted the metrics used to evaluate the performance, accuracy, and precision to detect garbage on images. Deep learning is the main technique used for image processing. YOLO, Deep CNN and Faster R-CNN are the principal techniques used for classification and detection of solid waste due to their speed and accuracy. These results may be very useful to induce and to guide the development of tools to detect solid waste in our country.\",\"PeriodicalId\":339143,\"journal\":{\"name\":\"2021 IEEE V Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE V Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/jocici54528.2021.9794347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE V Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/jocici54528.2021.9794347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

世界各国政府面临的主要问题之一是固体废物在其国家普遍存在。农村和城市中散落的固体废物给人类和环境造成了严重的问题。在过去的几年里,人们利用技术和人工智能开发了不同的固体废物管理解决方案。计算机视觉是这些不断发展的领域之一,随着技术和算法的改进,可以检测和分类图像和视频中的物体。通过在不同的数据库中进行文献综述,我们发现了来自IEEE、ACM、Science Direct、Springer和IOPScience的17项研究,这些研究涉及使用人工智能技术使用计算机图像检测和分类固体废物沉积物。我们分析了这些研究中用于算法训练的目标检测技术和数据集的信息。我们还描述了用于评估检测图像上的垃圾的性能、准确性和精度的指标。深度学习是用于图像处理的主要技术。YOLO、Deep CNN和Faster R-CNN由于其速度和准确性,是用于固体废物分类和检测的主要技术。这些结果对引导和指导我国固体废物检测工具的开发具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Solid Waste Deposits in Urban Areas using Artificial Intelligence and Image Processing: a Literature Review
Abstract One of the main problems that governments around the world face is the prevalent presence of solid wastes in their countries. Scattered solid wastes in rural and urban areas cause serious problems to people and the environment. In the last years, different solutions for solid waste management have been developed using technology and artificial intelligence. Computer vision is one of these areas in constant development, with improvements in techniques and algorithms to detect and classify objects in images and videos. By doing a literature review in different databases, we found 17 studies from IEEE, ACM, Science Direct, Springer and IOPScience that address the use of artificial intelligence techniques to detect and classify solid waste deposits using computer images. We analyzed information about the object detection techniques and the dataset used for algorithm training in these studies. We also depicted the metrics used to evaluate the performance, accuracy, and precision to detect garbage on images. Deep learning is the main technique used for image processing. YOLO, Deep CNN and Faster R-CNN are the principal techniques used for classification and detection of solid waste due to their speed and accuracy. These results may be very useful to induce and to guide the development of tools to detect solid waste in our country.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信