D. Mishra, R. Verma, A. Baral, N. Haque, S. Chakravorti
{"title":"利用油纸绝缘界面区深阱释放电荷估计性能参数","authors":"D. Mishra, R. Verma, A. Baral, N. Haque, S. Chakravorti","doi":"10.1109/CATCON47128.2019.CN0058","DOIUrl":null,"url":null,"abstract":"De-trapped charge dislodged from interfacial region of oil-paper insulation can be used as an effective insulation sensitive parameter. Over time, various physiochemical reactions takes place at interfacial region and consequently results in the formation of different trap sites (deep and shallow). Charges which resides at these traps sites are de- trapped after gaining sufficient energy. In present analysis, it is found that charge dislocated from deep traps maintains some specific type of relationship with different insulation sensitive parameters. Before using de-trapped (dislodge from deep traps) as an effective insulation sensitive parameter the effect of geometry must be reduced, as amount of de-trapped charge depends on the area of interfacial region which is not identical for all units. Result presented in this paper shows that use of geometric capacitance for normalization purposes significantly reduces the effects of insulation physical dimensions on de- trapped charge. The capability of deep charge (normalized using dc insulation resistance and geometrical capacitance) is also compared in the present work.","PeriodicalId":183797,"journal":{"name":"2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Performance Parameters Using Charge Freed from Deep Traps Located at Interfacial Region of Oil-Paper Insulation\",\"authors\":\"D. Mishra, R. Verma, A. Baral, N. Haque, S. Chakravorti\",\"doi\":\"10.1109/CATCON47128.2019.CN0058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"De-trapped charge dislodged from interfacial region of oil-paper insulation can be used as an effective insulation sensitive parameter. Over time, various physiochemical reactions takes place at interfacial region and consequently results in the formation of different trap sites (deep and shallow). Charges which resides at these traps sites are de- trapped after gaining sufficient energy. In present analysis, it is found that charge dislocated from deep traps maintains some specific type of relationship with different insulation sensitive parameters. Before using de-trapped (dislodge from deep traps) as an effective insulation sensitive parameter the effect of geometry must be reduced, as amount of de-trapped charge depends on the area of interfacial region which is not identical for all units. Result presented in this paper shows that use of geometric capacitance for normalization purposes significantly reduces the effects of insulation physical dimensions on de- trapped charge. The capability of deep charge (normalized using dc insulation resistance and geometrical capacitance) is also compared in the present work.\",\"PeriodicalId\":183797,\"journal\":{\"name\":\"2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CATCON47128.2019.CN0058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CATCON47128.2019.CN0058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimation of Performance Parameters Using Charge Freed from Deep Traps Located at Interfacial Region of Oil-Paper Insulation
De-trapped charge dislodged from interfacial region of oil-paper insulation can be used as an effective insulation sensitive parameter. Over time, various physiochemical reactions takes place at interfacial region and consequently results in the formation of different trap sites (deep and shallow). Charges which resides at these traps sites are de- trapped after gaining sufficient energy. In present analysis, it is found that charge dislocated from deep traps maintains some specific type of relationship with different insulation sensitive parameters. Before using de-trapped (dislodge from deep traps) as an effective insulation sensitive parameter the effect of geometry must be reduced, as amount of de-trapped charge depends on the area of interfacial region which is not identical for all units. Result presented in this paper shows that use of geometric capacitance for normalization purposes significantly reduces the effects of insulation physical dimensions on de- trapped charge. The capability of deep charge (normalized using dc insulation resistance and geometrical capacitance) is also compared in the present work.