{"title":"电池交换站充电策略设计:一种博弈论方法","authors":"Huanyu Yan, Chenxi Sun, Huanxin Liao, Xiaoying Tang","doi":"10.1109/SmartGridComm52983.2022.9960987","DOIUrl":null,"url":null,"abstract":"Battery Swapping Stations (BSSs) are rapidly ex-panding infrastructures for electric vehicles. However, the in-appropriate battery charging strategy of BSSs will lead to unnecessary charging costs. In this paper, we study the real-time optimal battery charging strategies for every BSSs in a system under a non-cooperative scenario and dynamic electricity pricing environment. We propose a non-cooperative game model to characterize the BSS charging competition. We prove the existence and uniqueness of Nash Equilibrium under arbitrary swapping demands and battery numbers, and an algorithm is proposed to solve the Equilibrium. Numerical results show that our proposed strategy outperforms the benchmark strategies in terms of overall profits.","PeriodicalId":252202,"journal":{"name":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Battery Charging Strategies Design for Battery Swapping Stations: A Game Theoretic Approach\",\"authors\":\"Huanyu Yan, Chenxi Sun, Huanxin Liao, Xiaoying Tang\",\"doi\":\"10.1109/SmartGridComm52983.2022.9960987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Battery Swapping Stations (BSSs) are rapidly ex-panding infrastructures for electric vehicles. However, the in-appropriate battery charging strategy of BSSs will lead to unnecessary charging costs. In this paper, we study the real-time optimal battery charging strategies for every BSSs in a system under a non-cooperative scenario and dynamic electricity pricing environment. We propose a non-cooperative game model to characterize the BSS charging competition. We prove the existence and uniqueness of Nash Equilibrium under arbitrary swapping demands and battery numbers, and an algorithm is proposed to solve the Equilibrium. Numerical results show that our proposed strategy outperforms the benchmark strategies in terms of overall profits.\",\"PeriodicalId\":252202,\"journal\":{\"name\":\"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm52983.2022.9960987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm52983.2022.9960987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Battery Charging Strategies Design for Battery Swapping Stations: A Game Theoretic Approach
Battery Swapping Stations (BSSs) are rapidly ex-panding infrastructures for electric vehicles. However, the in-appropriate battery charging strategy of BSSs will lead to unnecessary charging costs. In this paper, we study the real-time optimal battery charging strategies for every BSSs in a system under a non-cooperative scenario and dynamic electricity pricing environment. We propose a non-cooperative game model to characterize the BSS charging competition. We prove the existence and uniqueness of Nash Equilibrium under arbitrary swapping demands and battery numbers, and an algorithm is proposed to solve the Equilibrium. Numerical results show that our proposed strategy outperforms the benchmark strategies in terms of overall profits.