{"title":"5G飞蜂窝睡眠模式下的能量效率","authors":"C. Bouras, Georgios Diles","doi":"10.1109/WD.2017.7918130","DOIUrl":null,"url":null,"abstract":"Energy efficiency is a major requirement for next generation mobile networks both as an end to reduce operational expenses and to increase the systems' ecological friendliness. Another integral part of 5G networks is the increased density of the deployment of small radius base stations, such as femtocells. Based on the design principle that demands a system to be active and transmitting only when and where it is needed, we evaluate the energy savings harvested when sleep mode techniques are enforced in dense femtocell deployments. We present our novel variations of sleep mode combined with hybrid access strategies and we estimate capacity and energy benefits. Our simulations show significant advantages in performance and energy efficiency.","PeriodicalId":179998,"journal":{"name":"2017 Wireless Days","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Energy efficiency in sleep mode for 5G femtocells\",\"authors\":\"C. Bouras, Georgios Diles\",\"doi\":\"10.1109/WD.2017.7918130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy efficiency is a major requirement for next generation mobile networks both as an end to reduce operational expenses and to increase the systems' ecological friendliness. Another integral part of 5G networks is the increased density of the deployment of small radius base stations, such as femtocells. Based on the design principle that demands a system to be active and transmitting only when and where it is needed, we evaluate the energy savings harvested when sleep mode techniques are enforced in dense femtocell deployments. We present our novel variations of sleep mode combined with hybrid access strategies and we estimate capacity and energy benefits. Our simulations show significant advantages in performance and energy efficiency.\",\"PeriodicalId\":179998,\"journal\":{\"name\":\"2017 Wireless Days\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Wireless Days\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WD.2017.7918130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Wireless Days","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WD.2017.7918130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy efficiency is a major requirement for next generation mobile networks both as an end to reduce operational expenses and to increase the systems' ecological friendliness. Another integral part of 5G networks is the increased density of the deployment of small radius base stations, such as femtocells. Based on the design principle that demands a system to be active and transmitting only when and where it is needed, we evaluate the energy savings harvested when sleep mode techniques are enforced in dense femtocell deployments. We present our novel variations of sleep mode combined with hybrid access strategies and we estimate capacity and energy benefits. Our simulations show significant advantages in performance and energy efficiency.