基于深度信念网络的信号调制分类

Wenwen Li, Z. Dou, Can Wang, Yu Zhang
{"title":"基于深度信念网络的信号调制分类","authors":"Wenwen Li, Z. Dou, Can Wang, Yu Zhang","doi":"10.1109/GCWkshps45667.2019.9024651","DOIUrl":null,"url":null,"abstract":"Modulation classification plays an important role in civil and military fields such as software defined radio, electronic countermeasure and intelligent demodulator. Due to the difficulty of feature extraction in traditional signal modulation classification algorithm, this paper proposes a signal modulation classification algorithm based on deep belief network. The proposed algorithm does not need to extract the signal features, and uses the I/Q data to classify signal directly. The simulation results show that the classification performance of the proposed algorithm is better than traditional machine learning algorithm, when the simulation condition is same.","PeriodicalId":210825,"journal":{"name":"2019 IEEE Globecom Workshops (GC Wkshps)","volume":"365 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Signal Modulation Classification Based on Deep Belief Network\",\"authors\":\"Wenwen Li, Z. Dou, Can Wang, Yu Zhang\",\"doi\":\"10.1109/GCWkshps45667.2019.9024651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modulation classification plays an important role in civil and military fields such as software defined radio, electronic countermeasure and intelligent demodulator. Due to the difficulty of feature extraction in traditional signal modulation classification algorithm, this paper proposes a signal modulation classification algorithm based on deep belief network. The proposed algorithm does not need to extract the signal features, and uses the I/Q data to classify signal directly. The simulation results show that the classification performance of the proposed algorithm is better than traditional machine learning algorithm, when the simulation condition is same.\",\"PeriodicalId\":210825,\"journal\":{\"name\":\"2019 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"365 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCWkshps45667.2019.9024651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps45667.2019.9024651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

调制分类在软件无线电、电子对抗和智能解调器等民用和军事领域发挥着重要作用。针对传统信号调制分类算法特征提取困难的问题,提出了一种基于深度信念网络的信号调制分类算法。该算法不需要提取信号特征,直接使用I/Q数据对信号进行分类。仿真结果表明,在相同的仿真条件下,该算法的分类性能优于传统的机器学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal Modulation Classification Based on Deep Belief Network
Modulation classification plays an important role in civil and military fields such as software defined radio, electronic countermeasure and intelligent demodulator. Due to the difficulty of feature extraction in traditional signal modulation classification algorithm, this paper proposes a signal modulation classification algorithm based on deep belief network. The proposed algorithm does not need to extract the signal features, and uses the I/Q data to classify signal directly. The simulation results show that the classification performance of the proposed algorithm is better than traditional machine learning algorithm, when the simulation condition is same.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信