一种适应逐渐变化环境的神经网络老化速率控制方法

T. Tanprasert, T. Kripruksawan
{"title":"一种适应逐渐变化环境的神经网络老化速率控制方法","authors":"T. Tanprasert, T. Kripruksawan","doi":"10.1109/ICONIP.2002.1202154","DOIUrl":null,"url":null,"abstract":"The paper presents a decayed prior sampling algorithm for integrating the existing knowledge of a supervised learning neural networks with the new training data. The algorithm allows the existing knowledge to age out in slow rate as a neural network is gradually retrained with consecutive sets of new samples, resembling the change of application locality under a consistent environment. The experiments are performed on 2-dimensional partitions problem and the results convincingly confirm the effectiveness of the technique.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An approach to control aging rate of neural networks under adaptation to gradually changing context\",\"authors\":\"T. Tanprasert, T. Kripruksawan\",\"doi\":\"10.1109/ICONIP.2002.1202154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a decayed prior sampling algorithm for integrating the existing knowledge of a supervised learning neural networks with the new training data. The algorithm allows the existing knowledge to age out in slow rate as a neural network is gradually retrained with consecutive sets of new samples, resembling the change of application locality under a consistent environment. The experiments are performed on 2-dimensional partitions problem and the results convincingly confirm the effectiveness of the technique.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1202154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1202154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种将已有的监督学习神经网络知识与新的训练数据相结合的衰减先验抽样算法。该算法允许现有知识以缓慢的速度老化,因为神经网络是用连续的新样本集逐渐重新训练的,类似于在一致的环境下应用局部的变化。在二维分割问题上进行了实验,结果令人信服地证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach to control aging rate of neural networks under adaptation to gradually changing context
The paper presents a decayed prior sampling algorithm for integrating the existing knowledge of a supervised learning neural networks with the new training data. The algorithm allows the existing knowledge to age out in slow rate as a neural network is gradually retrained with consecutive sets of new samples, resembling the change of application locality under a consistent environment. The experiments are performed on 2-dimensional partitions problem and the results convincingly confirm the effectiveness of the technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信