用剩余定理求沿曲线的积分

Yuan Liu
{"title":"用剩余定理求沿曲线的积分","authors":"Yuan Liu","doi":"10.1117/12.2679151","DOIUrl":null,"url":null,"abstract":"It has been shown that ∫∞n(𝐥𝐨𝐠 𝒙)𝟐/𝟏+𝒙𝟐 𝒅𝒙 = 𝝅𝟑/𝟖, and 𝐥𝐨𝐠 𝒛 has been chosen to be a branch of the logarithm function in this paper. Meanwhile, logz is holomorphic in the domain: {𝒛: 𝑰𝒎𝒛 ≥ 𝟎 𝒂𝒏𝒅 𝒛 ≠ 𝟎}. Then this study calculates how to express residue of f as 𝟏 + 𝐳𝟐 = (𝐳 − 𝐢) ∙ (𝐳 + 𝐢), and there are two solutions of 𝟏 + 𝐳𝟐 = 𝟎: 𝒛𝟏 = 𝒊 𝒂𝒏𝒅 𝒛𝟐 = −𝒊. The function has only one pole occurs at 𝐳 = 𝐢. This result applies to more calculation of integral along curves.","PeriodicalId":301595,"journal":{"name":"Conference on Pure, Applied, and Computational Mathematics","volume":"271 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The integral along curves by residue theorem\",\"authors\":\"Yuan Liu\",\"doi\":\"10.1117/12.2679151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been shown that ∫∞n(𝐥𝐨𝐠 𝒙)𝟐/𝟏+𝒙𝟐 𝒅𝒙 = 𝝅𝟑/𝟖, and 𝐥𝐨𝐠 𝒛 has been chosen to be a branch of the logarithm function in this paper. Meanwhile, logz is holomorphic in the domain: {𝒛: 𝑰𝒎𝒛 ≥ 𝟎 𝒂𝒏𝒅 𝒛 ≠ 𝟎}. Then this study calculates how to express residue of f as 𝟏 + 𝐳𝟐 = (𝐳 − 𝐢) ∙ (𝐳 + 𝐢), and there are two solutions of 𝟏 + 𝐳𝟐 = 𝟎: 𝒛𝟏 = 𝒊 𝒂𝒏𝒅 𝒛𝟐 = −𝒊. The function has only one pole occurs at 𝐳 = 𝐢. This result applies to more calculation of integral along curves.\",\"PeriodicalId\":301595,\"journal\":{\"name\":\"Conference on Pure, Applied, and Computational Mathematics\",\"volume\":\"271 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Pure, Applied, and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2679151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Pure, Applied, and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2679151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结果表明:∫∞n(𝐥𝐨𝐠𝒙)/ +𝒙𝒙=𝝅/𝟖,并选择𝐥𝐨𝐠𝒛作为对数函数的一个分支。同时,logz域的全纯:{𝒛:𝑰𝒎𝒛≥𝟎𝒂𝒏𝒅𝒛≠𝟎}。然后本研究计算如何表达残渣f𝟏+𝐳𝟐=(𝐳−𝐢)∙(𝐳+𝐢),有两个解决方案𝟏+𝐳𝟐=𝟎:𝒛𝟏=𝒊𝒂𝒏𝒅𝒛𝟐=−𝒊。函数只有一个极点出现在𝐳=𝐢。这一结果适用于更多沿曲线积分的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The integral along curves by residue theorem
It has been shown that ∫∞n(𝐥𝐨𝐠 𝒙)𝟐/𝟏+𝒙𝟐 𝒅𝒙 = 𝝅𝟑/𝟖, and 𝐥𝐨𝐠 𝒛 has been chosen to be a branch of the logarithm function in this paper. Meanwhile, logz is holomorphic in the domain: {𝒛: 𝑰𝒎𝒛 ≥ 𝟎 𝒂𝒏𝒅 𝒛 ≠ 𝟎}. Then this study calculates how to express residue of f as 𝟏 + 𝐳𝟐 = (𝐳 − 𝐢) ∙ (𝐳 + 𝐢), and there are two solutions of 𝟏 + 𝐳𝟐 = 𝟎: 𝒛𝟏 = 𝒊 𝒂𝒏𝒅 𝒛𝟐 = −𝒊. The function has only one pole occurs at 𝐳 = 𝐢. This result applies to more calculation of integral along curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信