{"title":"GRASP ASW搜索方案的声学基准验证","authors":"K.P. Hemsteter, D. DelBalzo","doi":"10.1109/OCEANS.2002.1193248","DOIUrl":null,"url":null,"abstract":"A genetic algorithm is used in non-homogeneous and anisotropic environments to nearly optimize sonar search tracks. The optimization metric is maximum cumulative detection probability for a specified sonar (passive or active) against a target with specified characteristics (acoustic and tactical) during a fixed time period. This application for search planning is named GRASP, for Genetic Range-dependent Algorithm for Search Planning. A validation of GRASP solutions in various ocean environments is shown under benchmark conditions, i.e., fairly simple synthetic environments and a simple target distribution. Directional, range-dependent sonar performance (signal excess) is estimated from parabolic equation calculations of transmission loss. The search tracks produced by the genetic algorithm are generally intuitive; they usually remain in high detection areas. When track solutions are counter-intuitive, we explain unexpected behavior (e.g., zigzag turns, tracks offset from symmetric features, and occasional departures from high detection areas) in terms of details in the acoustic field.","PeriodicalId":431594,"journal":{"name":"OCEANS '02 MTS/IEEE","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Acoustic benchmark validation of GRASP ASW search plans\",\"authors\":\"K.P. Hemsteter, D. DelBalzo\",\"doi\":\"10.1109/OCEANS.2002.1193248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A genetic algorithm is used in non-homogeneous and anisotropic environments to nearly optimize sonar search tracks. The optimization metric is maximum cumulative detection probability for a specified sonar (passive or active) against a target with specified characteristics (acoustic and tactical) during a fixed time period. This application for search planning is named GRASP, for Genetic Range-dependent Algorithm for Search Planning. A validation of GRASP solutions in various ocean environments is shown under benchmark conditions, i.e., fairly simple synthetic environments and a simple target distribution. Directional, range-dependent sonar performance (signal excess) is estimated from parabolic equation calculations of transmission loss. The search tracks produced by the genetic algorithm are generally intuitive; they usually remain in high detection areas. When track solutions are counter-intuitive, we explain unexpected behavior (e.g., zigzag turns, tracks offset from symmetric features, and occasional departures from high detection areas) in terms of details in the acoustic field.\",\"PeriodicalId\":431594,\"journal\":{\"name\":\"OCEANS '02 MTS/IEEE\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS '02 MTS/IEEE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2002.1193248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS '02 MTS/IEEE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2002.1193248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acoustic benchmark validation of GRASP ASW search plans
A genetic algorithm is used in non-homogeneous and anisotropic environments to nearly optimize sonar search tracks. The optimization metric is maximum cumulative detection probability for a specified sonar (passive or active) against a target with specified characteristics (acoustic and tactical) during a fixed time period. This application for search planning is named GRASP, for Genetic Range-dependent Algorithm for Search Planning. A validation of GRASP solutions in various ocean environments is shown under benchmark conditions, i.e., fairly simple synthetic environments and a simple target distribution. Directional, range-dependent sonar performance (signal excess) is estimated from parabolic equation calculations of transmission loss. The search tracks produced by the genetic algorithm are generally intuitive; they usually remain in high detection areas. When track solutions are counter-intuitive, we explain unexpected behavior (e.g., zigzag turns, tracks offset from symmetric features, and occasional departures from high detection areas) in terms of details in the acoustic field.