Ahmad Din, B. Bona, J. Morrissette, Moazzam Hussain, Massimo Violante, M. Naseem
{"title":"基于人工神经网络的无人机自主降落嵌入式低功耗控制器","authors":"Ahmad Din, B. Bona, J. Morrissette, Moazzam Hussain, Massimo Violante, M. Naseem","doi":"10.1109/FIT.2012.42","DOIUrl":null,"url":null,"abstract":"We present real-time, stereo vision based autonomous landing system for small Unmanned Aerial Vehicles (UAV) onto an unknown landing target. The paper describes the algorithms and design of FPGA based co-processor implementing Artificial Neural Network (ANN) to implement real time object tracking, 3D position estimation using Visual Odometry(VO), Horizontal displacement and Euclidean distance from landing target. This approach doesn't require any explicit marker or landing target, it estimates attitude, track safe landing area, and compute distance and horizontal displacement form landing target. Experimental results show suitability of the real-time stereo vision landing approach using FPGA for tracking, that doesn't require any explicit landing marker.","PeriodicalId":166149,"journal":{"name":"2012 10th International Conference on Frontiers of Information Technology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Embedded Low Power Controller for Autonomous Landing of UAV Using Artificial Neural Network\",\"authors\":\"Ahmad Din, B. Bona, J. Morrissette, Moazzam Hussain, Massimo Violante, M. Naseem\",\"doi\":\"10.1109/FIT.2012.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present real-time, stereo vision based autonomous landing system for small Unmanned Aerial Vehicles (UAV) onto an unknown landing target. The paper describes the algorithms and design of FPGA based co-processor implementing Artificial Neural Network (ANN) to implement real time object tracking, 3D position estimation using Visual Odometry(VO), Horizontal displacement and Euclidean distance from landing target. This approach doesn't require any explicit marker or landing target, it estimates attitude, track safe landing area, and compute distance and horizontal displacement form landing target. Experimental results show suitability of the real-time stereo vision landing approach using FPGA for tracking, that doesn't require any explicit landing marker.\",\"PeriodicalId\":166149,\"journal\":{\"name\":\"2012 10th International Conference on Frontiers of Information Technology\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 10th International Conference on Frontiers of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FIT.2012.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Conference on Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2012.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Embedded Low Power Controller for Autonomous Landing of UAV Using Artificial Neural Network
We present real-time, stereo vision based autonomous landing system for small Unmanned Aerial Vehicles (UAV) onto an unknown landing target. The paper describes the algorithms and design of FPGA based co-processor implementing Artificial Neural Network (ANN) to implement real time object tracking, 3D position estimation using Visual Odometry(VO), Horizontal displacement and Euclidean distance from landing target. This approach doesn't require any explicit marker or landing target, it estimates attitude, track safe landing area, and compute distance and horizontal displacement form landing target. Experimental results show suitability of the real-time stereo vision landing approach using FPGA for tracking, that doesn't require any explicit landing marker.