基于指标的电网重构改进遗传方法

S. Eroshenko, A. Khalyasmaa, M. Senyuk, D. Snegirev
{"title":"基于指标的电网重构改进遗传方法","authors":"S. Eroshenko, A. Khalyasmaa, M. Senyuk, D. Snegirev","doi":"10.1109/RTUCON48111.2019.8982340","DOIUrl":null,"url":null,"abstract":"The paper presents a novel approach to power network reconfiguration, based on indicators and genetic optimization philosophy. The “fitness” of power network topology is estimated by the relative decrease o the total periodic short-circuit currents. Power losses, power transmission line lading, voltage levels are considered as constraints in order to ensure feasibility of the resulting topology of the network. The approach was verified using 118-bus fragment of the real regional power system and demonstrated high efficiency in comparison to the conventional genetic optimization.","PeriodicalId":317349,"journal":{"name":"2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indicator-based modified genetic approach for power network reconfiguration\",\"authors\":\"S. Eroshenko, A. Khalyasmaa, M. Senyuk, D. Snegirev\",\"doi\":\"10.1109/RTUCON48111.2019.8982340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a novel approach to power network reconfiguration, based on indicators and genetic optimization philosophy. The “fitness” of power network topology is estimated by the relative decrease o the total periodic short-circuit currents. Power losses, power transmission line lading, voltage levels are considered as constraints in order to ensure feasibility of the resulting topology of the network. The approach was verified using 118-bus fragment of the real regional power system and demonstrated high efficiency in comparison to the conventional genetic optimization.\",\"PeriodicalId\":317349,\"journal\":{\"name\":\"2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTUCON48111.2019.8982340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTUCON48111.2019.8982340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于指标和遗传优化思想的电网重构新方法。电网拓扑的“适应度”由总周期短路电流的相对减小量来估计。为了保证所得到的网络拓扑的可行性,考虑了功率损耗、输电线路载重、电压等级等约束条件。通过实际区域电力系统的118母线片段验证了该方法的有效性,与传统的遗传优化方法相比具有较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indicator-based modified genetic approach for power network reconfiguration
The paper presents a novel approach to power network reconfiguration, based on indicators and genetic optimization philosophy. The “fitness” of power network topology is estimated by the relative decrease o the total periodic short-circuit currents. Power losses, power transmission line lading, voltage levels are considered as constraints in order to ensure feasibility of the resulting topology of the network. The approach was verified using 118-bus fragment of the real regional power system and demonstrated high efficiency in comparison to the conventional genetic optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信