{"title":"改进的人类行为无监督/半监督学习的多图表示","authors":"Simon Jones, Ling Shao","doi":"10.1109/CVPR.2014.110","DOIUrl":null,"url":null,"abstract":"Graph-based methods are a useful class of methods for improving the performance of unsupervised and semi-supervised machine learning tasks, such as clustering or information retrieval. However, the performance of existing graph-based methods is highly dependent on how well the affinity graph reflects the original data structure. We propose that multimedia such as images or videos consist of multiple separate components, and therefore more than one graph is required to fully capture the relationship between them. Accordingly, we present a new spectral method - the Feature Grouped Spectral Multigraph (FGSM) - which comprises the following steps. First, mutually independent subsets of the original feature space are generated through feature clustering. Secondly, a separate graph is generated from each feature subset. Finally, a spectral embedding is calculated on each graph, and the embeddings are scaled/aggregated into a single representation. Using this representation, a variety of experiments are performed on three learning tasks - clustering, retrieval and recognition - on human action datasets, demonstrating considerably better performance than the state-of-the-art.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"A Multigraph Representation for Improved Unsupervised/Semi-supervised Learning of Human Actions\",\"authors\":\"Simon Jones, Ling Shao\",\"doi\":\"10.1109/CVPR.2014.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph-based methods are a useful class of methods for improving the performance of unsupervised and semi-supervised machine learning tasks, such as clustering or information retrieval. However, the performance of existing graph-based methods is highly dependent on how well the affinity graph reflects the original data structure. We propose that multimedia such as images or videos consist of multiple separate components, and therefore more than one graph is required to fully capture the relationship between them. Accordingly, we present a new spectral method - the Feature Grouped Spectral Multigraph (FGSM) - which comprises the following steps. First, mutually independent subsets of the original feature space are generated through feature clustering. Secondly, a separate graph is generated from each feature subset. Finally, a spectral embedding is calculated on each graph, and the embeddings are scaled/aggregated into a single representation. Using this representation, a variety of experiments are performed on three learning tasks - clustering, retrieval and recognition - on human action datasets, demonstrating considerably better performance than the state-of-the-art.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multigraph Representation for Improved Unsupervised/Semi-supervised Learning of Human Actions
Graph-based methods are a useful class of methods for improving the performance of unsupervised and semi-supervised machine learning tasks, such as clustering or information retrieval. However, the performance of existing graph-based methods is highly dependent on how well the affinity graph reflects the original data structure. We propose that multimedia such as images or videos consist of multiple separate components, and therefore more than one graph is required to fully capture the relationship between them. Accordingly, we present a new spectral method - the Feature Grouped Spectral Multigraph (FGSM) - which comprises the following steps. First, mutually independent subsets of the original feature space are generated through feature clustering. Secondly, a separate graph is generated from each feature subset. Finally, a spectral embedding is calculated on each graph, and the embeddings are scaled/aggregated into a single representation. Using this representation, a variety of experiments are performed on three learning tasks - clustering, retrieval and recognition - on human action datasets, demonstrating considerably better performance than the state-of-the-art.